| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt10 | Structured version Visualization version GIF version | ||
| Description: Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt10.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt10.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2lt10.1 | ⊢ 𝐴 < ;10 |
| dp2lt10.2 | ⊢ 𝐵 < ;10 |
| Ref | Expression |
|---|---|
| dp2lt10 | ⊢ _𝐴𝐵 < ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32825 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 2 | dp2lt10.1 | . . . . . 6 ⊢ 𝐴 < ;10 | |
| 3 | 9p1e10 12611 | . . . . . 6 ⊢ (9 + 1) = ;10 | |
| 4 | 2, 3 | breqtrri 5122 | . . . . 5 ⊢ 𝐴 < (9 + 1) |
| 5 | dp2lt10.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | 5 | nn0zi 12518 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
| 7 | 9nn0 12426 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 8 | 7 | nn0zi 12518 | . . . . . 6 ⊢ 9 ∈ ℤ |
| 9 | zleltp1 12544 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 9 ∈ ℤ) → (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1))) | |
| 10 | 6, 8, 9 | mp2an 692 | . . . . 5 ⊢ (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1)) |
| 11 | 4, 10 | mpbir 231 | . . . 4 ⊢ 𝐴 ≤ 9 |
| 12 | dp2lt10.2 | . . . . 5 ⊢ 𝐵 < ;10 | |
| 13 | rpssre 12919 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 14 | dp2lt10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℝ+ | |
| 15 | 13, 14 | sselii 3934 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 16 | 10re 12628 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 17 | 10pos 12626 | . . . . . . 7 ⊢ 0 < ;10 | |
| 18 | 16, 17 | elrpii 12914 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
| 19 | divlt1lt 12982 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 20 | 15, 18, 19 | mp2an 692 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 21 | 12, 20 | mpbir 231 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
| 22 | 5 | nn0rei 12413 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
| 23 | 0re 11136 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 24 | 23, 17 | gtneii 11246 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 25 | 15, 16, 24 | redivcli 11909 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
| 26 | 22, 25 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
| 27 | 9re 12245 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 28 | 1re 11134 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 29 | 27, 28 | pm3.2i 470 | . . . . 5 ⊢ (9 ∈ ℝ ∧ 1 ∈ ℝ) |
| 30 | leltadd 11622 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (9 ∈ ℝ ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1))) | |
| 31 | 26, 29, 30 | mp2an 692 | . . . 4 ⊢ ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1)) |
| 32 | 11, 21, 31 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (9 + 1) |
| 33 | 32, 3 | breqtri 5120 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < ;10 |
| 34 | 1, 33 | eqbrtri 5116 | 1 ⊢ _𝐴𝐵 < ;10 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 ≤ cle 11169 / cdiv 11795 9c9 12208 ℕ0cn0 12402 ℤcz 12489 ;cdc 12609 ℝ+crp 12911 _cdp2 32824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-rp 12912 df-dp2 32825 |
| This theorem is referenced by: hgt750lem 34618 hgt750lem2 34619 |
| Copyright terms: Public domain | W3C validator |