Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt10 | Structured version Visualization version GIF version |
Description: Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt10.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt10.b | ⊢ 𝐵 ∈ ℝ+ |
dp2lt10.1 | ⊢ 𝐴 < ;10 |
dp2lt10.2 | ⊢ 𝐵 < ;10 |
Ref | Expression |
---|---|
dp2lt10 | ⊢ _𝐴𝐵 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 30674 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
2 | dp2lt10.1 | . . . . . 6 ⊢ 𝐴 < ;10 | |
3 | 9p1e10 12144 | . . . . . 6 ⊢ (9 + 1) = ;10 | |
4 | 2, 3 | breqtrri 5062 | . . . . 5 ⊢ 𝐴 < (9 + 1) |
5 | dp2lt10.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
6 | 5 | nn0zi 12051 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
7 | 9nn0 11963 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 7 | nn0zi 12051 | . . . . . 6 ⊢ 9 ∈ ℤ |
9 | zleltp1 12077 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 9 ∈ ℤ) → (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1))) | |
10 | 6, 8, 9 | mp2an 691 | . . . . 5 ⊢ (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1)) |
11 | 4, 10 | mpbir 234 | . . . 4 ⊢ 𝐴 ≤ 9 |
12 | dp2lt10.2 | . . . . 5 ⊢ 𝐵 < ;10 | |
13 | rpssre 12442 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
14 | dp2lt10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℝ+ | |
15 | 13, 14 | sselii 3891 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
16 | 10re 12161 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
17 | 10pos 12159 | . . . . . . 7 ⊢ 0 < ;10 | |
18 | 16, 17 | elrpii 12438 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
19 | divlt1lt 12504 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
20 | 15, 18, 19 | mp2an 691 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
21 | 12, 20 | mpbir 234 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
22 | 5 | nn0rei 11950 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
23 | 0re 10686 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
24 | 23, 17 | gtneii 10795 | . . . . . . 7 ⊢ ;10 ≠ 0 |
25 | 15, 16, 24 | redivcli 11450 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
26 | 22, 25 | pm3.2i 474 | . . . . 5 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
27 | 9re 11778 | . . . . . 6 ⊢ 9 ∈ ℝ | |
28 | 1re 10684 | . . . . . 6 ⊢ 1 ∈ ℝ | |
29 | 27, 28 | pm3.2i 474 | . . . . 5 ⊢ (9 ∈ ℝ ∧ 1 ∈ ℝ) |
30 | leltadd 11167 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (9 ∈ ℝ ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1))) | |
31 | 26, 29, 30 | mp2an 691 | . . . 4 ⊢ ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1)) |
32 | 11, 21, 31 | mp2an 691 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (9 + 1) |
33 | 32, 3 | breqtri 5060 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < ;10 |
34 | 1, 33 | eqbrtri 5056 | 1 ⊢ _𝐴𝐵 < ;10 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 ℝcr 10579 0cc0 10580 1c1 10581 + caddc 10583 < clt 10718 ≤ cle 10719 / cdiv 11340 9c9 11741 ℕ0cn0 11939 ℤcz 12025 ;cdc 12142 ℝ+crp 12435 _cdp2 30673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-rp 12436 df-dp2 30674 |
This theorem is referenced by: hgt750lem 32154 hgt750lem2 32155 |
Copyright terms: Public domain | W3C validator |