| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt10 | Structured version Visualization version GIF version | ||
| Description: Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dp2lt10.a | ⊢ 𝐴 ∈ ℕ0 |
| dp2lt10.b | ⊢ 𝐵 ∈ ℝ+ |
| dp2lt10.1 | ⊢ 𝐴 < ;10 |
| dp2lt10.2 | ⊢ 𝐵 < ;10 |
| Ref | Expression |
|---|---|
| dp2lt10 | ⊢ _𝐴𝐵 < ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32859 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 2 | dp2lt10.1 | . . . . . 6 ⊢ 𝐴 < ;10 | |
| 3 | 9p1e10 12596 | . . . . . 6 ⊢ (9 + 1) = ;10 | |
| 4 | 2, 3 | breqtrri 5120 | . . . . 5 ⊢ 𝐴 < (9 + 1) |
| 5 | dp2lt10.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 6 | 5 | nn0zi 12503 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
| 7 | 9nn0 12412 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 8 | 7 | nn0zi 12503 | . . . . . 6 ⊢ 9 ∈ ℤ |
| 9 | zleltp1 12529 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 9 ∈ ℤ) → (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1))) | |
| 10 | 6, 8, 9 | mp2an 692 | . . . . 5 ⊢ (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1)) |
| 11 | 4, 10 | mpbir 231 | . . . 4 ⊢ 𝐴 ≤ 9 |
| 12 | dp2lt10.2 | . . . . 5 ⊢ 𝐵 < ;10 | |
| 13 | rpssre 12900 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 14 | dp2lt10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℝ+ | |
| 15 | 13, 14 | sselii 3927 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 16 | 10re 12613 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
| 17 | 10pos 12611 | . . . . . . 7 ⊢ 0 < ;10 | |
| 18 | 16, 17 | elrpii 12895 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
| 19 | divlt1lt 12963 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 20 | 15, 18, 19 | mp2an 692 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 21 | 12, 20 | mpbir 231 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
| 22 | 5 | nn0rei 12399 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
| 23 | 0re 11121 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 24 | 23, 17 | gtneii 11232 | . . . . . . 7 ⊢ ;10 ≠ 0 |
| 25 | 15, 16, 24 | redivcli 11895 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
| 26 | 22, 25 | pm3.2i 470 | . . . . 5 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
| 27 | 9re 12231 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 28 | 1re 11119 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 29 | 27, 28 | pm3.2i 470 | . . . . 5 ⊢ (9 ∈ ℝ ∧ 1 ∈ ℝ) |
| 30 | leltadd 11608 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (9 ∈ ℝ ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1))) | |
| 31 | 26, 29, 30 | mp2an 692 | . . . 4 ⊢ ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1)) |
| 32 | 11, 21, 31 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (9 + 1) |
| 33 | 32, 3 | breqtri 5118 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < ;10 |
| 34 | 1, 33 | eqbrtri 5114 | 1 ⊢ _𝐴𝐵 < ;10 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 / cdiv 11781 9c9 12194 ℕ0cn0 12388 ℤcz 12475 ;cdc 12594 ℝ+crp 12892 _cdp2 32858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-rp 12893 df-dp2 32859 |
| This theorem is referenced by: hgt750lem 34685 hgt750lem2 34686 |
| Copyright terms: Public domain | W3C validator |