![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp2lt10 | Structured version Visualization version GIF version |
Description: Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dp2lt10.a | ⊢ 𝐴 ∈ ℕ0 |
dp2lt10.b | ⊢ 𝐵 ∈ ℝ+ |
dp2lt10.1 | ⊢ 𝐴 < ;10 |
dp2lt10.2 | ⊢ 𝐵 < ;10 |
Ref | Expression |
---|---|
dp2lt10 | ⊢ _𝐴𝐵 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 32293 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
2 | dp2lt10.1 | . . . . . 6 ⊢ 𝐴 < ;10 | |
3 | 9p1e10 12683 | . . . . . 6 ⊢ (9 + 1) = ;10 | |
4 | 2, 3 | breqtrri 5175 | . . . . 5 ⊢ 𝐴 < (9 + 1) |
5 | dp2lt10.a | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
6 | 5 | nn0zi 12591 | . . . . . 6 ⊢ 𝐴 ∈ ℤ |
7 | 9nn0 12500 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 7 | nn0zi 12591 | . . . . . 6 ⊢ 9 ∈ ℤ |
9 | zleltp1 12617 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 9 ∈ ℤ) → (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1))) | |
10 | 6, 8, 9 | mp2an 690 | . . . . 5 ⊢ (𝐴 ≤ 9 ↔ 𝐴 < (9 + 1)) |
11 | 4, 10 | mpbir 230 | . . . 4 ⊢ 𝐴 ≤ 9 |
12 | dp2lt10.2 | . . . . 5 ⊢ 𝐵 < ;10 | |
13 | rpssre 12985 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
14 | dp2lt10.b | . . . . . . 7 ⊢ 𝐵 ∈ ℝ+ | |
15 | 13, 14 | sselii 3979 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
16 | 10re 12700 | . . . . . . 7 ⊢ ;10 ∈ ℝ | |
17 | 10pos 12698 | . . . . . . 7 ⊢ 0 < ;10 | |
18 | 16, 17 | elrpii 12981 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
19 | divlt1lt 13047 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
20 | 15, 18, 19 | mp2an 690 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
21 | 12, 20 | mpbir 230 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
22 | 5 | nn0rei 12487 | . . . . . 6 ⊢ 𝐴 ∈ ℝ |
23 | 0re 11220 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
24 | 23, 17 | gtneii 11330 | . . . . . . 7 ⊢ ;10 ≠ 0 |
25 | 15, 16, 24 | redivcli 11985 | . . . . . 6 ⊢ (𝐵 / ;10) ∈ ℝ |
26 | 22, 25 | pm3.2i 471 | . . . . 5 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
27 | 9re 12315 | . . . . . 6 ⊢ 9 ∈ ℝ | |
28 | 1re 11218 | . . . . . 6 ⊢ 1 ∈ ℝ | |
29 | 27, 28 | pm3.2i 471 | . . . . 5 ⊢ (9 ∈ ℝ ∧ 1 ∈ ℝ) |
30 | leltadd 11702 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (9 ∈ ℝ ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1))) | |
31 | 26, 29, 30 | mp2an 690 | . . . 4 ⊢ ((𝐴 ≤ 9 ∧ (𝐵 / ;10) < 1) → (𝐴 + (𝐵 / ;10)) < (9 + 1)) |
32 | 11, 21, 31 | mp2an 690 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (9 + 1) |
33 | 32, 3 | breqtri 5173 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) < ;10 |
34 | 1, 33 | eqbrtri 5169 | 1 ⊢ _𝐴𝐵 < ;10 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7411 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 < clt 11252 ≤ cle 11253 / cdiv 11875 9c9 12278 ℕ0cn0 12476 ℤcz 12562 ;cdc 12681 ℝ+crp 12978 _cdp2 32292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-rp 12979 df-dp2 32293 |
This theorem is referenced by: hgt750lem 33949 hgt750lem2 33950 |
Copyright terms: Public domain | W3C validator |