MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Structured version   Visualization version   GIF version

Theorem chtublem 27255
Description: Lemma for chtub 27256. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))

Proof of Theorem chtublem
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12339 . . . . . 6 2 ∈ ℕ
2 nnmulcl 12290 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43nnred 12281 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
5 peano2rem 11576 . . . 4 ((2 · 𝑁) ∈ ℝ → ((2 · 𝑁) − 1) ∈ ℝ)
64, 5syl 17 . . 3 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℝ)
7 chtcl 27152 . . 3 (((2 · 𝑁) − 1) ∈ ℝ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
9 nnre 12273 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 chtcl 27152 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
119, 10syl 17 . . 3 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℝ)
12 nnnn0 12533 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 2m1e1 12392 . . . . . . . . . . 11 (2 − 1) = 1
1413oveq2i 7442 . . . . . . . . . 10 ((2 · 𝑁) − (2 − 1)) = ((2 · 𝑁) − 1)
153nncnd 12282 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
16 2cn 12341 . . . . . . . . . . . . 13 2 ∈ ℂ
17 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
18 subsub 11539 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
1916, 17, 18mp3an23 1455 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
2015, 19syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
21 nncn 12274 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 subdi 11696 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2316, 17, 22mp3an13 1454 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
25 2t1e2 12429 . . . . . . . . . . . . . 14 (2 · 1) = 2
2625oveq2i 7442 . . . . . . . . . . . . 13 ((2 · 𝑁) − (2 · 1)) = ((2 · 𝑁) − 2)
2724, 26eqtrdi 2793 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2))
2827oveq1d 7446 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) = (((2 · 𝑁) − 2) + 1))
2920, 28eqtr4d 2780 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = ((2 · (𝑁 − 1)) + 1))
3014, 29eqtr3id 2791 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((2 · (𝑁 − 1)) + 1))
31 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
32 nnm1nn0 12567 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
33 nn0mulcl 12562 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (2 · (𝑁 − 1)) ∈ ℕ0)
3431, 32, 33sylancr 587 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) ∈ ℕ0)
35 nn0p1nn 12565 . . . . . . . . . 10 ((2 · (𝑁 − 1)) ∈ ℕ0 → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3730, 36eqeltrd 2841 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ)
38 nnnn0 12533 . . . . . . . 8 (((2 · 𝑁) − 1) ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
40 1re 11261 . . . . . . . . . . 11 1 ∈ ℝ
4140a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
42 nnge1 12294 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
4341, 9, 9, 42leadd2dd 11878 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (𝑁 + 𝑁))
44212timesd 12509 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
4543, 44breqtrrd 5171 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (2 · 𝑁))
46 leaddsub 11739 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
479, 41, 4, 46syl3anc 1373 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
4845, 47mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≤ ((2 · 𝑁) − 1))
49 elfz2nn0 13658 . . . . . . 7 (𝑁 ∈ (0...((2 · 𝑁) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((2 · 𝑁) − 1) ∈ ℕ0𝑁 ≤ ((2 · 𝑁) − 1)))
5012, 39, 48, 49syl3anbrc 1344 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((2 · 𝑁) − 1)))
51 bccl2 14362 . . . . . 6 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5250, 51syl 17 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5352nnrpd 13075 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ+)
5453relogcld 26665 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ)
5511, 54readdcld 11290 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ)
56 4re 12350 . . . . . 6 4 ∈ ℝ
57 4pos 12373 . . . . . 6 0 < 4
5856, 57elrpii 13037 . . . . 5 4 ∈ ℝ+
59 relogcl 26617 . . . . 5 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
6058, 59ax-mp 5 . . . 4 (log‘4) ∈ ℝ
6132nn0red 12588 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
62 remulcl 11240 . . . 4 (((log‘4) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6360, 61, 62sylancr 587 . . 3 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6411, 63readdcld 11290 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))) ∈ ℝ)
65 iftrue 4531 . . . . . . . . . . . 12 (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
6665adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6852adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
6967, 68pccld 16888 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0)
70 nn0addge1 12572 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7140, 69, 70sylancr 587 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
72 iftrue 4531 . . . . . . . . . . . . . . . 16 (𝑝𝑁 → if(𝑝𝑁, 1, 0) = 1)
7372oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7473breq2d 5155 . . . . . . . . . . . . . 14 (𝑝𝑁 → (1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7571, 74syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7675adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
77 prmnn 16711 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7877ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
79 simprl 771 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ≤ ((2 · 𝑁) − 1))
80 prmz 16712 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8137nnzd 12640 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℤ)
82 eluz 12892 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8380, 81, 82syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8483adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8579, 84mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((2 · 𝑁) − 1) ∈ (ℤ𝑝))
86 dvdsfac 16363 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℕ ∧ ((2 · 𝑁) − 1) ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
88 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
8939faccld 14323 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℕ)
90 pcelnn 16908 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9188, 89, 90syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9291adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9387, 92mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ)
9493nnge1d 12314 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
95 iffalse 4534 . . . . . . . . . . . . . . . . 17 𝑝𝑁 → if(𝑝𝑁, 1, 0) = 0)
9695oveq1d 7446 . . . . . . . . . . . . . . . 16 𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9796ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9869nn0cnd 12589 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
9998addlidd 11462 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
10099adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
101 bcval2 14344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10250, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10332nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
10417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℂ)
10544oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((𝑁 + 𝑁) − 1))
10621, 21, 104, 105assraddsubd 11677 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = (𝑁 + (𝑁 − 1)))
10721, 103, 106mvrladdd 11676 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) − 𝑁) = (𝑁 − 1))
108107fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (!‘(((2 · 𝑁) − 1) − 𝑁)) = (!‘(𝑁 − 1)))
109108oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 − 1)) · (!‘𝑁)))
110109oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
111102, 110eqtrd 2777 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
112111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
113112oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))))
114 nnz 12634 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℤ)
115 nnne0 12300 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ≠ 0)
116114, 115jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11789, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11932faccld 14323 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
12012faccld 14323 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
121119, 120nnmulcld 12319 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
123 pcdiv 16890 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0) ∧ ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
12467, 118, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
125 nnz 12634 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℤ)
126 nnne0 12300 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0)
127125, 126jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘(𝑁 − 1)) ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
128119, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
129128adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
130 nnz 12634 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
131 nnne0 12300 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ≠ 0)
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
134133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
135 pcmul 16889 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0) ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0)) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
13667, 129, 134, 135syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
137136oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
138113, 124, 1373eqtrd 2781 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
139138adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
140 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝𝑁)
141 prmfac1 16757 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘𝑁)) → 𝑝𝑁)
1421413expia 1122 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
14312, 142sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
144143adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
145140, 144mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘𝑁))
14680adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
147129simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘(𝑁 − 1)) ∈ ℤ)
148 nnz 12634 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
150 dvdsmultr1 16333 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℤ ∧ (!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
151146, 147, 149, 150syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
152 facnn2 14321 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
154153breq2d 5155 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) ↔ 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
155151, 154sylibrd 259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
156155adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
157145, 156mtod 198 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘(𝑁 − 1)))
158 pceq0 16909 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘(𝑁 − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
15988, 119, 158syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
160159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
161157, 160mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘(𝑁 − 1))) = 0)
162 pceq0 16909 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘𝑁) ∈ ℕ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
16388, 120, 162syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
164163adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
165145, 164mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘𝑁)) = 0)
166161, 165oveq12d 7449 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = (0 + 0))
167 00id 11436 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
168166, 167eqtrdi 2793 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = 0)
169168oveq2d 7447 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0))
170 pccl 16887 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
17188, 89, 170syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
172171nn0cnd 12589 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℂ)
173172subid1d 11609 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
174173adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
175139, 169, 1743eqtrd 2781 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17697, 100, 1753eqtrd 2781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17794, 176breqtrrd 5171 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
178177expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (¬ 𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
17976, 178pm2.61d 179 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
18066, 179eqbrtrd 5165 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
181180ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
182 1nn0 12542 . . . . . . . . . . . . 13 1 ∈ ℕ0
183 0nn0 12541 . . . . . . . . . . . . 13 0 ∈ ℕ0
184182, 183ifcli 4573 . . . . . . . . . . . 12 if(𝑝𝑁, 1, 0) ∈ ℕ0
185 nn0addcl 12561 . . . . . . . . . . . 12 ((if(𝑝𝑁, 1, 0) ∈ ℕ0 ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
186184, 69, 185sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
187186nn0ge0d 12590 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
188 iffalse 4534 . . . . . . . . . . 11 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 0)
189188breq1d 5153 . . . . . . . . . 10 𝑝 ≤ ((2 · 𝑁) − 1) → (if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
190187, 189syl5ibrcom 247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
191181, 190pm2.61d 179 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
192 eqid 2737 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
193192prmorcht 27221 . . . . . . . . . . . 12 (((2 · 𝑁) − 1) ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
19437, 193syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
195194oveq2d 7447 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
196195adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
197 nncn 12274 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
198197exp1d 14181 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
199198ifeq1d 4545 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
200199mpteq2ia 5245 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
201200eqcomi 2746 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
202182a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑛 ∈ ℙ) → 1 ∈ ℕ0)
203202ralrimiva 3146 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
20437adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((2 · 𝑁) − 1) ∈ ℕ)
205 eqidd 2738 . . . . . . . . . 10 (𝑛 = 𝑝 → 1 = 1)
206201, 203, 204, 67, 205pcmpt 16930 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
207196, 206eqtrd 2777 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
208 efchtcl 27154 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (exp‘(θ‘𝑁)) ∈ ℕ)
2099, 208syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℕ)
210209adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (exp‘(θ‘𝑁)) ∈ ℕ)
211 nnz 12634 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℤ)
212 nnne0 12300 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ≠ 0)
213211, 212jca 511 . . . . . . . . . . 11 ((exp‘(θ‘𝑁)) ∈ ℕ → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
214210, 213syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
215 nnz 12634 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℤ)
216 nnne0 12300 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≠ 0)
217215, 216jca 511 . . . . . . . . . . 11 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
21868, 217syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
219 pcmul 16889 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0) ∧ ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0)) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
22067, 214, 218, 219syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
221192prmorcht 27221 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁))
222221oveq2d 7447 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
223222adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
224 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
225201, 203, 224, 67, 205pcmpt 16930 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)) = if(𝑝𝑁, 1, 0))
226223, 225eqtrd 2777 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = if(𝑝𝑁, 1, 0))
227226oveq1d 7446 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
228220, 227eqtrd 2777 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
229191, 207, 2283brtr4d 5175 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
230229ralrimiva 3146 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
231 efchtcl 27154 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℝ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
2326, 231syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
233232nnzd 12640 . . . . . . 7 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ)
234209, 52nnmulcld 12319 . . . . . . . 8 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ)
235234nnzd 12640 . . . . . . 7 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ)
236 pc2dvds 16917 . . . . . . 7 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
237233, 235, 236syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
238230, 237mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
239 dvdsle 16347 . . . . . 6 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
240233, 234, 239syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
241238, 240mpd 15 . . . 4 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
24211recnd 11289 . . . . . 6 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℂ)
24354recnd 11289 . . . . . 6 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
244 efadd 16130 . . . . . 6 (((θ‘𝑁) ∈ ℂ ∧ (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ) → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
245242, 243, 244syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
24653reeflogd 26666 . . . . . 6 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) = (((2 · 𝑁) − 1)C𝑁))
247246oveq2d 7447 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
248245, 247eqtrd 2777 . . . 4 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
249241, 248breqtrrd 5171 . . 3 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))))
250 efle 16154 . . . 4 (((θ‘((2 · 𝑁) − 1)) ∈ ℝ ∧ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ) → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
2518, 55, 250syl2anc 584 . . 3 (𝑁 ∈ ℕ → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
252249, 251mpbird 257 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))
253 fzfid 14014 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...((2 · 𝑁) − 1)) ∈ Fin)
254 elfzelz 13564 . . . . . . . . . . 11 (𝑘 ∈ (0...((2 · 𝑁) − 1)) → 𝑘 ∈ ℤ)
255 bccl 14361 . . . . . . . . . . 11 ((((2 · 𝑁) − 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
25639, 254, 255syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
257256nn0red 12588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℝ)
258256nn0ge0d 12590 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → 0 ≤ (((2 · 𝑁) − 1)C𝑘))
259 nn0uz 12920 . . . . . . . . . . . 12 0 = (ℤ‘0)
26032, 259eleqtrdi 2851 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
261 fzss1 13603 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
262260, 261syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
263 eluz 12892 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
264148, 81, 263syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
26548, 264mpbird 257 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ (ℤ𝑁))
266 fzss2 13604 . . . . . . . . . . 11 (((2 · 𝑁) − 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
267265, 266syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
268262, 267sstrd 3994 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
269253, 257, 258, 268fsumless 15832 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) ≤ Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
27032nn0zd 12639 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
271 bccmpl 14348 . . . . . . . . . . . . . . 15 ((((2 · 𝑁) − 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
27239, 148, 271syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
273107oveq2d 7447 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
274272, 273eqtrd 2777 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
27552nncnd 12282 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℂ)
276274, 275eqeltrrd 2842 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ)
277 oveq2 7439 . . . . . . . . . . . . 13 (𝑘 = (𝑁 − 1) → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
278277fsum1 15783 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ) → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
279270, 276, 278syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
280279, 274eqtr4d 2780 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
281280oveq1d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
28221, 104npcand 11624 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
283 uzid 12893 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
284270, 283syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
285 peano2uz 12943 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
286284, 285syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
287282, 286eqeltrrd 2842 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
288268sselda 3983 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → 𝑘 ∈ (0...((2 · 𝑁) − 1)))
289256nn0cnd 12589 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
290288, 289syldan 591 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
291 oveq2 7439 . . . . . . . . . 10 (𝑘 = 𝑁 → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
292287, 290, 291fsumm1 15787 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) = (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)))
2932752timesd 12509 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
294281, 292, 2933eqtr4rd 2788 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘))
295 binom11 15868 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℕ0 → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
29639, 295syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
297269, 294, 2963brtr4d 5175 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) ≤ (2↑((2 · 𝑁) − 1)))
298 mulcom 11241 . . . . . . . 8 ((2 ∈ ℂ ∧ (((2 · 𝑁) − 1)C𝑁) ∈ ℂ) → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
29916, 275, 298sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
30030oveq2d 7447 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = (2↑((2 · (𝑁 − 1)) + 1)))
301 expp1 14109 . . . . . . . . 9 ((2 ∈ ℂ ∧ (2 · (𝑁 − 1)) ∈ ℕ0) → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30216, 34, 301sylancr 587 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30316a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30431a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
305303, 32, 304expmuld 14189 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = ((2↑2)↑(𝑁 − 1)))
306 sq2 14236 . . . . . . . . . . 11 (2↑2) = 4
307306oveq1i 7441 . . . . . . . . . 10 ((2↑2)↑(𝑁 − 1)) = (4↑(𝑁 − 1))
308305, 307eqtrdi 2793 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = (4↑(𝑁 − 1)))
309308oveq1d 7446 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2 · (𝑁 − 1))) · 2) = ((4↑(𝑁 − 1)) · 2))
310300, 302, 3093eqtrd 2781 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = ((4↑(𝑁 − 1)) · 2))
311297, 299, 3103brtr3d 5174 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2))
31252nnred 12281 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ)
313 reexpcl 14119 . . . . . . . 8 ((4 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (4↑(𝑁 − 1)) ∈ ℝ)
31456, 32, 313sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) ∈ ℝ)
315 2re 12340 . . . . . . . . 9 2 ∈ ℝ
316 2pos 12369 . . . . . . . . 9 0 < 2
317315, 316pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
318317a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
319 lemul1 12119 . . . . . . 7 (((((2 · 𝑁) − 1)C𝑁) ∈ ℝ ∧ (4↑(𝑁 − 1)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
320312, 314, 318, 319syl3anc 1373 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
321311, 320mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)))
32260recni 11275 . . . . . . . 8 (log‘4) ∈ ℂ
323 mulcom 11241 . . . . . . . 8 (((log‘4) ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
324322, 103, 323sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
325324fveq2d 6910 . . . . . 6 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (exp‘((𝑁 − 1) · (log‘4))))
326 reexplog 26637 . . . . . . 7 ((4 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℤ) → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
32758, 270, 326sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
328325, 327eqtr4d 2780 . . . . 5 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (4↑(𝑁 − 1)))
329321, 246, 3283brtr4d 5175 . . . 4 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1))))
330 efle 16154 . . . . 5 (((log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ ∧ ((log‘4) · (𝑁 − 1)) ∈ ℝ) → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
33154, 63, 330syl2anc 584 . . . 4 (𝑁 ∈ ℕ → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
332329, 331mpbird 257 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)))
33354, 63, 11, 332leadd2dd 11878 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
3348, 55, 64, 252, 333letrd 11418 1 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  seqcseq 14042  cexp 14102  !cfa 14312  Ccbc 14341  Σcsu 15722  expce 16097  cdvds 16290  cprime 16708   pCnt cpc 16874  logclog 26596  θccht 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cht 27140
This theorem is referenced by:  chtub  27256
  Copyright terms: Public domain W3C validator