MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Structured version   Visualization version   GIF version

Theorem chtublem 27150
Description: Lemma for chtub 27151. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))

Proof of Theorem chtublem
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12198 . . . . . 6 2 ∈ ℕ
2 nnmulcl 12149 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43nnred 12140 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
5 peano2rem 11428 . . . 4 ((2 · 𝑁) ∈ ℝ → ((2 · 𝑁) − 1) ∈ ℝ)
64, 5syl 17 . . 3 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℝ)
7 chtcl 27047 . . 3 (((2 · 𝑁) − 1) ∈ ℝ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
9 nnre 12132 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 chtcl 27047 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
119, 10syl 17 . . 3 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℝ)
12 nnnn0 12388 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 2m1e1 12246 . . . . . . . . . . 11 (2 − 1) = 1
1413oveq2i 7357 . . . . . . . . . 10 ((2 · 𝑁) − (2 − 1)) = ((2 · 𝑁) − 1)
153nncnd 12141 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
16 2cn 12200 . . . . . . . . . . . . 13 2 ∈ ℂ
17 ax-1cn 11064 . . . . . . . . . . . . 13 1 ∈ ℂ
18 subsub 11391 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
1916, 17, 18mp3an23 1455 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
2015, 19syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
21 nncn 12133 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 subdi 11550 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2316, 17, 22mp3an13 1454 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
25 2t1e2 12283 . . . . . . . . . . . . . 14 (2 · 1) = 2
2625oveq2i 7357 . . . . . . . . . . . . 13 ((2 · 𝑁) − (2 · 1)) = ((2 · 𝑁) − 2)
2724, 26eqtrdi 2782 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2))
2827oveq1d 7361 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) = (((2 · 𝑁) − 2) + 1))
2920, 28eqtr4d 2769 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = ((2 · (𝑁 − 1)) + 1))
3014, 29eqtr3id 2780 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((2 · (𝑁 − 1)) + 1))
31 2nn0 12398 . . . . . . . . . . 11 2 ∈ ℕ0
32 nnm1nn0 12422 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
33 nn0mulcl 12417 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (2 · (𝑁 − 1)) ∈ ℕ0)
3431, 32, 33sylancr 587 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) ∈ ℕ0)
35 nn0p1nn 12420 . . . . . . . . . 10 ((2 · (𝑁 − 1)) ∈ ℕ0 → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3730, 36eqeltrd 2831 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ)
38 nnnn0 12388 . . . . . . . 8 (((2 · 𝑁) − 1) ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
40 1re 11112 . . . . . . . . . . 11 1 ∈ ℝ
4140a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
42 nnge1 12153 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
4341, 9, 9, 42leadd2dd 11732 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (𝑁 + 𝑁))
44212timesd 12364 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
4543, 44breqtrrd 5119 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (2 · 𝑁))
46 leaddsub 11593 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
479, 41, 4, 46syl3anc 1373 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
4845, 47mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≤ ((2 · 𝑁) − 1))
49 elfz2nn0 13518 . . . . . . 7 (𝑁 ∈ (0...((2 · 𝑁) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((2 · 𝑁) − 1) ∈ ℕ0𝑁 ≤ ((2 · 𝑁) − 1)))
5012, 39, 48, 49syl3anbrc 1344 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((2 · 𝑁) − 1)))
51 bccl2 14230 . . . . . 6 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5250, 51syl 17 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5352nnrpd 12932 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ+)
5453relogcld 26560 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ)
5511, 54readdcld 11141 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ)
56 4re 12209 . . . . . 6 4 ∈ ℝ
57 4pos 12232 . . . . . 6 0 < 4
5856, 57elrpii 12893 . . . . 5 4 ∈ ℝ+
59 relogcl 26512 . . . . 5 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
6058, 59ax-mp 5 . . . 4 (log‘4) ∈ ℝ
6132nn0red 12443 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
62 remulcl 11091 . . . 4 (((log‘4) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6360, 61, 62sylancr 587 . . 3 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6411, 63readdcld 11141 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))) ∈ ℝ)
65 iftrue 4481 . . . . . . . . . . . 12 (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
6665adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6852adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
6967, 68pccld 16762 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0)
70 nn0addge1 12427 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7140, 69, 70sylancr 587 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
72 iftrue 4481 . . . . . . . . . . . . . . . 16 (𝑝𝑁 → if(𝑝𝑁, 1, 0) = 1)
7372oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7473breq2d 5103 . . . . . . . . . . . . . 14 (𝑝𝑁 → (1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7571, 74syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7675adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
77 prmnn 16585 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7877ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
79 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ≤ ((2 · 𝑁) − 1))
80 prmz 16586 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8137nnzd 12495 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℤ)
82 eluz 12746 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8380, 81, 82syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8483adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8579, 84mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((2 · 𝑁) − 1) ∈ (ℤ𝑝))
86 dvdsfac 16237 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℕ ∧ ((2 · 𝑁) − 1) ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
88 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
8939faccld 14191 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℕ)
90 pcelnn 16782 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9188, 89, 90syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9291adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9387, 92mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ)
9493nnge1d 12173 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
95 iffalse 4484 . . . . . . . . . . . . . . . . 17 𝑝𝑁 → if(𝑝𝑁, 1, 0) = 0)
9695oveq1d 7361 . . . . . . . . . . . . . . . 16 𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9796ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9869nn0cnd 12444 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
9998addlidd 11314 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
10099adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
101 bcval2 14212 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10250, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10332nn0cnd 12444 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
10417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℂ)
10544oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((𝑁 + 𝑁) − 1))
10621, 21, 104, 105assraddsubd 11531 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = (𝑁 + (𝑁 − 1)))
10721, 103, 106mvrladdd 11530 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) − 𝑁) = (𝑁 − 1))
108107fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (!‘(((2 · 𝑁) − 1) − 𝑁)) = (!‘(𝑁 − 1)))
109108oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 − 1)) · (!‘𝑁)))
110109oveq2d 7362 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
111102, 110eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
112111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
113112oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))))
114 nnz 12489 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℤ)
115 nnne0 12159 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ≠ 0)
116114, 115jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11789, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11932faccld 14191 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
12012faccld 14191 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
121119, 120nnmulcld 12178 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
123 pcdiv 16764 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0) ∧ ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
12467, 118, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
125 nnz 12489 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℤ)
126 nnne0 12159 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0)
127125, 126jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘(𝑁 − 1)) ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
128119, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
129128adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
130 nnz 12489 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
131 nnne0 12159 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ≠ 0)
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
134133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
135 pcmul 16763 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0) ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0)) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
13667, 129, 134, 135syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
137136oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
138113, 124, 1373eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
139138adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
140 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝𝑁)
141 prmfac1 16631 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘𝑁)) → 𝑝𝑁)
1421413expia 1121 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
14312, 142sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
144143adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
145140, 144mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘𝑁))
14680adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
147129simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘(𝑁 − 1)) ∈ ℤ)
148 nnz 12489 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
150 dvdsmultr1 16207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℤ ∧ (!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
151146, 147, 149, 150syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
152 facnn2 14189 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
154153breq2d 5103 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) ↔ 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
155151, 154sylibrd 259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
156155adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
157145, 156mtod 198 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘(𝑁 − 1)))
158 pceq0 16783 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘(𝑁 − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
15988, 119, 158syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
160159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
161157, 160mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘(𝑁 − 1))) = 0)
162 pceq0 16783 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘𝑁) ∈ ℕ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
16388, 120, 162syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
164163adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
165145, 164mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘𝑁)) = 0)
166161, 165oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = (0 + 0))
167 00id 11288 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
168166, 167eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = 0)
169168oveq2d 7362 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0))
170 pccl 16761 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
17188, 89, 170syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
172171nn0cnd 12444 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℂ)
173172subid1d 11461 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
174173adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
175139, 169, 1743eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17697, 100, 1753eqtrd 2770 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17794, 176breqtrrd 5119 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
178177expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (¬ 𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
17976, 178pm2.61d 179 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
18066, 179eqbrtrd 5113 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
181180ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
182 1nn0 12397 . . . . . . . . . . . . 13 1 ∈ ℕ0
183 0nn0 12396 . . . . . . . . . . . . 13 0 ∈ ℕ0
184182, 183ifcli 4523 . . . . . . . . . . . 12 if(𝑝𝑁, 1, 0) ∈ ℕ0
185 nn0addcl 12416 . . . . . . . . . . . 12 ((if(𝑝𝑁, 1, 0) ∈ ℕ0 ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
186184, 69, 185sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
187186nn0ge0d 12445 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
188 iffalse 4484 . . . . . . . . . . 11 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 0)
189188breq1d 5101 . . . . . . . . . 10 𝑝 ≤ ((2 · 𝑁) − 1) → (if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
190187, 189syl5ibrcom 247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
191181, 190pm2.61d 179 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
192 eqid 2731 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
193192prmorcht 27116 . . . . . . . . . . . 12 (((2 · 𝑁) − 1) ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
19437, 193syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
195194oveq2d 7362 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
196195adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
197 nncn 12133 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
198197exp1d 14048 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
199198ifeq1d 4495 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
200199mpteq2ia 5186 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
201200eqcomi 2740 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
202182a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑛 ∈ ℙ) → 1 ∈ ℕ0)
203202ralrimiva 3124 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
20437adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((2 · 𝑁) − 1) ∈ ℕ)
205 eqidd 2732 . . . . . . . . . 10 (𝑛 = 𝑝 → 1 = 1)
206201, 203, 204, 67, 205pcmpt 16804 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
207196, 206eqtrd 2766 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
208 efchtcl 27049 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (exp‘(θ‘𝑁)) ∈ ℕ)
2099, 208syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℕ)
210209adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (exp‘(θ‘𝑁)) ∈ ℕ)
211 nnz 12489 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℤ)
212 nnne0 12159 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ≠ 0)
213211, 212jca 511 . . . . . . . . . . 11 ((exp‘(θ‘𝑁)) ∈ ℕ → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
214210, 213syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
215 nnz 12489 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℤ)
216 nnne0 12159 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≠ 0)
217215, 216jca 511 . . . . . . . . . . 11 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
21868, 217syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
219 pcmul 16763 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0) ∧ ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0)) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
22067, 214, 218, 219syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
221192prmorcht 27116 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁))
222221oveq2d 7362 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
223222adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
224 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
225201, 203, 224, 67, 205pcmpt 16804 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)) = if(𝑝𝑁, 1, 0))
226223, 225eqtrd 2766 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = if(𝑝𝑁, 1, 0))
227226oveq1d 7361 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
228220, 227eqtrd 2766 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
229191, 207, 2283brtr4d 5123 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
230229ralrimiva 3124 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
231 efchtcl 27049 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℝ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
2326, 231syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
233232nnzd 12495 . . . . . . 7 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ)
234209, 52nnmulcld 12178 . . . . . . . 8 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ)
235234nnzd 12495 . . . . . . 7 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ)
236 pc2dvds 16791 . . . . . . 7 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
237233, 235, 236syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
238230, 237mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
239 dvdsle 16221 . . . . . 6 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
240233, 234, 239syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
241238, 240mpd 15 . . . 4 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
24211recnd 11140 . . . . . 6 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℂ)
24354recnd 11140 . . . . . 6 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
244 efadd 16001 . . . . . 6 (((θ‘𝑁) ∈ ℂ ∧ (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ) → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
245242, 243, 244syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
24653reeflogd 26561 . . . . . 6 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) = (((2 · 𝑁) − 1)C𝑁))
247246oveq2d 7362 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
248245, 247eqtrd 2766 . . . 4 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
249241, 248breqtrrd 5119 . . 3 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))))
250 efle 16027 . . . 4 (((θ‘((2 · 𝑁) − 1)) ∈ ℝ ∧ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ) → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
2518, 55, 250syl2anc 584 . . 3 (𝑁 ∈ ℕ → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
252249, 251mpbird 257 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))
253 fzfid 13880 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...((2 · 𝑁) − 1)) ∈ Fin)
254 elfzelz 13424 . . . . . . . . . . 11 (𝑘 ∈ (0...((2 · 𝑁) − 1)) → 𝑘 ∈ ℤ)
255 bccl 14229 . . . . . . . . . . 11 ((((2 · 𝑁) − 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
25639, 254, 255syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
257256nn0red 12443 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℝ)
258256nn0ge0d 12445 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → 0 ≤ (((2 · 𝑁) − 1)C𝑘))
259 nn0uz 12774 . . . . . . . . . . . 12 0 = (ℤ‘0)
26032, 259eleqtrdi 2841 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
261 fzss1 13463 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
262260, 261syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
263 eluz 12746 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
264148, 81, 263syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
26548, 264mpbird 257 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ (ℤ𝑁))
266 fzss2 13464 . . . . . . . . . . 11 (((2 · 𝑁) − 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
267265, 266syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
268262, 267sstrd 3945 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
269253, 257, 258, 268fsumless 15703 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) ≤ Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
27032nn0zd 12494 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
271 bccmpl 14216 . . . . . . . . . . . . . . 15 ((((2 · 𝑁) − 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
27239, 148, 271syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
273107oveq2d 7362 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
274272, 273eqtrd 2766 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
27552nncnd 12141 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℂ)
276274, 275eqeltrrd 2832 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ)
277 oveq2 7354 . . . . . . . . . . . . 13 (𝑘 = (𝑁 − 1) → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
278277fsum1 15654 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ) → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
279270, 276, 278syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
280279, 274eqtr4d 2769 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
281280oveq1d 7361 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
28221, 104npcand 11476 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
283 uzid 12747 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
284270, 283syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
285 peano2uz 12799 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
286284, 285syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
287282, 286eqeltrrd 2832 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
288268sselda 3934 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → 𝑘 ∈ (0...((2 · 𝑁) − 1)))
289256nn0cnd 12444 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
290288, 289syldan 591 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
291 oveq2 7354 . . . . . . . . . 10 (𝑘 = 𝑁 → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
292287, 290, 291fsumm1 15658 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) = (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)))
2932752timesd 12364 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
294281, 292, 2933eqtr4rd 2777 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘))
295 binom11 15739 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℕ0 → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
29639, 295syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
297269, 294, 2963brtr4d 5123 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) ≤ (2↑((2 · 𝑁) − 1)))
298 mulcom 11092 . . . . . . . 8 ((2 ∈ ℂ ∧ (((2 · 𝑁) − 1)C𝑁) ∈ ℂ) → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
29916, 275, 298sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
30030oveq2d 7362 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = (2↑((2 · (𝑁 − 1)) + 1)))
301 expp1 13975 . . . . . . . . 9 ((2 ∈ ℂ ∧ (2 · (𝑁 − 1)) ∈ ℕ0) → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30216, 34, 301sylancr 587 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30316a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30431a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
305303, 32, 304expmuld 14056 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = ((2↑2)↑(𝑁 − 1)))
306 sq2 14104 . . . . . . . . . . 11 (2↑2) = 4
307306oveq1i 7356 . . . . . . . . . 10 ((2↑2)↑(𝑁 − 1)) = (4↑(𝑁 − 1))
308305, 307eqtrdi 2782 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = (4↑(𝑁 − 1)))
309308oveq1d 7361 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2 · (𝑁 − 1))) · 2) = ((4↑(𝑁 − 1)) · 2))
310300, 302, 3093eqtrd 2770 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = ((4↑(𝑁 − 1)) · 2))
311297, 299, 3103brtr3d 5122 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2))
31252nnred 12140 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ)
313 reexpcl 13985 . . . . . . . 8 ((4 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (4↑(𝑁 − 1)) ∈ ℝ)
31456, 32, 313sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) ∈ ℝ)
315 2re 12199 . . . . . . . . 9 2 ∈ ℝ
316 2pos 12228 . . . . . . . . 9 0 < 2
317315, 316pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
318317a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
319 lemul1 11973 . . . . . . 7 (((((2 · 𝑁) − 1)C𝑁) ∈ ℝ ∧ (4↑(𝑁 − 1)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
320312, 314, 318, 319syl3anc 1373 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
321311, 320mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)))
32260recni 11126 . . . . . . . 8 (log‘4) ∈ ℂ
323 mulcom 11092 . . . . . . . 8 (((log‘4) ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
324322, 103, 323sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
325324fveq2d 6826 . . . . . 6 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (exp‘((𝑁 − 1) · (log‘4))))
326 reexplog 26532 . . . . . . 7 ((4 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℤ) → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
32758, 270, 326sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
328325, 327eqtr4d 2769 . . . . 5 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (4↑(𝑁 − 1)))
329321, 246, 3283brtr4d 5123 . . . 4 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1))))
330 efle 16027 . . . . 5 (((log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ ∧ ((log‘4) · (𝑁 − 1)) ∈ ℝ) → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
33154, 63, 330syl2anc 584 . . . 4 (𝑁 ∈ ℕ → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
332329, 331mpbird 257 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)))
33354, 63, 11, 332leadd2dd 11732 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
3348, 55, 64, 252, 333letrd 11270 1 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3902  ifcif 4475   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  4c4 12182  0cn0 12381  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  seqcseq 13908  cexp 13968  !cfa 14180  Ccbc 14209  Σcsu 15593  expce 15968  cdvds 16163  cprime 16582   pCnt cpc 16748  logclog 26491  θccht 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cht 27035
This theorem is referenced by:  chtub  27151
  Copyright terms: Public domain W3C validator