MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Structured version   Visualization version   GIF version

Theorem chtublem 27122
Description: Lemma for chtub 27123. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))

Proof of Theorem chtublem
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12259 . . . . . 6 2 ∈ ℕ
2 nnmulcl 12210 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 690 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43nnred 12201 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
5 peano2rem 11489 . . . 4 ((2 · 𝑁) ∈ ℝ → ((2 · 𝑁) − 1) ∈ ℝ)
64, 5syl 17 . . 3 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℝ)
7 chtcl 27019 . . 3 (((2 · 𝑁) − 1) ∈ ℝ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
9 nnre 12193 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 chtcl 27019 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
119, 10syl 17 . . 3 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℝ)
12 nnnn0 12449 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 2m1e1 12307 . . . . . . . . . . 11 (2 − 1) = 1
1413oveq2i 7398 . . . . . . . . . 10 ((2 · 𝑁) − (2 − 1)) = ((2 · 𝑁) − 1)
153nncnd 12202 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
16 2cn 12261 . . . . . . . . . . . . 13 2 ∈ ℂ
17 ax-1cn 11126 . . . . . . . . . . . . 13 1 ∈ ℂ
18 subsub 11452 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
1916, 17, 18mp3an23 1455 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
2015, 19syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
21 nncn 12194 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 subdi 11611 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2316, 17, 22mp3an13 1454 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
25 2t1e2 12344 . . . . . . . . . . . . . 14 (2 · 1) = 2
2625oveq2i 7398 . . . . . . . . . . . . 13 ((2 · 𝑁) − (2 · 1)) = ((2 · 𝑁) − 2)
2724, 26eqtrdi 2780 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2))
2827oveq1d 7402 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) = (((2 · 𝑁) − 2) + 1))
2920, 28eqtr4d 2767 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = ((2 · (𝑁 − 1)) + 1))
3014, 29eqtr3id 2778 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((2 · (𝑁 − 1)) + 1))
31 2nn0 12459 . . . . . . . . . . 11 2 ∈ ℕ0
32 nnm1nn0 12483 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
33 nn0mulcl 12478 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (2 · (𝑁 − 1)) ∈ ℕ0)
3431, 32, 33sylancr 587 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) ∈ ℕ0)
35 nn0p1nn 12481 . . . . . . . . . 10 ((2 · (𝑁 − 1)) ∈ ℕ0 → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3730, 36eqeltrd 2828 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ)
38 nnnn0 12449 . . . . . . . 8 (((2 · 𝑁) − 1) ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
40 1re 11174 . . . . . . . . . . 11 1 ∈ ℝ
4140a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
42 nnge1 12214 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
4341, 9, 9, 42leadd2dd 11793 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (𝑁 + 𝑁))
44212timesd 12425 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
4543, 44breqtrrd 5135 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (2 · 𝑁))
46 leaddsub 11654 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
479, 41, 4, 46syl3anc 1373 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
4845, 47mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≤ ((2 · 𝑁) − 1))
49 elfz2nn0 13579 . . . . . . 7 (𝑁 ∈ (0...((2 · 𝑁) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((2 · 𝑁) − 1) ∈ ℕ0𝑁 ≤ ((2 · 𝑁) − 1)))
5012, 39, 48, 49syl3anbrc 1344 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((2 · 𝑁) − 1)))
51 bccl2 14288 . . . . . 6 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5250, 51syl 17 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5352nnrpd 12993 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ+)
5453relogcld 26532 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ)
5511, 54readdcld 11203 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ)
56 4re 12270 . . . . . 6 4 ∈ ℝ
57 4pos 12293 . . . . . 6 0 < 4
5856, 57elrpii 12954 . . . . 5 4 ∈ ℝ+
59 relogcl 26484 . . . . 5 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
6058, 59ax-mp 5 . . . 4 (log‘4) ∈ ℝ
6132nn0red 12504 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
62 remulcl 11153 . . . 4 (((log‘4) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6360, 61, 62sylancr 587 . . 3 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6411, 63readdcld 11203 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))) ∈ ℝ)
65 iftrue 4494 . . . . . . . . . . . 12 (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
6665adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6852adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
6967, 68pccld 16821 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0)
70 nn0addge1 12488 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7140, 69, 70sylancr 587 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
72 iftrue 4494 . . . . . . . . . . . . . . . 16 (𝑝𝑁 → if(𝑝𝑁, 1, 0) = 1)
7372oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7473breq2d 5119 . . . . . . . . . . . . . 14 (𝑝𝑁 → (1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7571, 74syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7675adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
77 prmnn 16644 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7877ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
79 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ≤ ((2 · 𝑁) − 1))
80 prmz 16645 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8137nnzd 12556 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℤ)
82 eluz 12807 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8380, 81, 82syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8483adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8579, 84mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((2 · 𝑁) − 1) ∈ (ℤ𝑝))
86 dvdsfac 16296 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℕ ∧ ((2 · 𝑁) − 1) ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
88 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
8939faccld 14249 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℕ)
90 pcelnn 16841 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9188, 89, 90syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9291adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9387, 92mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ)
9493nnge1d 12234 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
95 iffalse 4497 . . . . . . . . . . . . . . . . 17 𝑝𝑁 → if(𝑝𝑁, 1, 0) = 0)
9695oveq1d 7402 . . . . . . . . . . . . . . . 16 𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9796ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9869nn0cnd 12505 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
9998addlidd 11375 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
10099adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
101 bcval2 14270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10250, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10332nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
10417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℂ)
10544oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((𝑁 + 𝑁) − 1))
10621, 21, 104, 105assraddsubd 11592 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = (𝑁 + (𝑁 − 1)))
10721, 103, 106mvrladdd 11591 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) − 𝑁) = (𝑁 − 1))
108107fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (!‘(((2 · 𝑁) − 1) − 𝑁)) = (!‘(𝑁 − 1)))
109108oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 − 1)) · (!‘𝑁)))
110109oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
111102, 110eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
112111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
113112oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))))
114 nnz 12550 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℤ)
115 nnne0 12220 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ≠ 0)
116114, 115jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11789, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11932faccld 14249 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
12012faccld 14249 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
121119, 120nnmulcld 12239 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
123 pcdiv 16823 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0) ∧ ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
12467, 118, 122, 123syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
125 nnz 12550 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℤ)
126 nnne0 12220 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0)
127125, 126jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘(𝑁 − 1)) ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
128119, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
129128adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
130 nnz 12550 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
131 nnne0 12220 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ≠ 0)
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
134133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
135 pcmul 16822 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0) ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0)) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
13667, 129, 134, 135syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
137136oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
138113, 124, 1373eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
139138adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
140 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝𝑁)
141 prmfac1 16690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘𝑁)) → 𝑝𝑁)
1421413expia 1121 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
14312, 142sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
144143adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
145140, 144mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘𝑁))
14680adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
147129simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘(𝑁 − 1)) ∈ ℤ)
148 nnz 12550 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
150 dvdsmultr1 16266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℤ ∧ (!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
151146, 147, 149, 150syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
152 facnn2 14247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
154153breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) ↔ 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
155151, 154sylibrd 259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
156155adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
157145, 156mtod 198 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘(𝑁 − 1)))
158 pceq0 16842 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘(𝑁 − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
15988, 119, 158syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
160159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
161157, 160mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘(𝑁 − 1))) = 0)
162 pceq0 16842 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘𝑁) ∈ ℕ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
16388, 120, 162syl2anr 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
164163adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
165145, 164mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘𝑁)) = 0)
166161, 165oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = (0 + 0))
167 00id 11349 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
168166, 167eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = 0)
169168oveq2d 7403 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0))
170 pccl 16820 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
17188, 89, 170syl2anr 597 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
172171nn0cnd 12505 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℂ)
173172subid1d 11522 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
174173adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
175139, 169, 1743eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17697, 100, 1753eqtrd 2768 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17794, 176breqtrrd 5135 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
178177expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (¬ 𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
17976, 178pm2.61d 179 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
18066, 179eqbrtrd 5129 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
181180ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
182 1nn0 12458 . . . . . . . . . . . . 13 1 ∈ ℕ0
183 0nn0 12457 . . . . . . . . . . . . 13 0 ∈ ℕ0
184182, 183ifcli 4536 . . . . . . . . . . . 12 if(𝑝𝑁, 1, 0) ∈ ℕ0
185 nn0addcl 12477 . . . . . . . . . . . 12 ((if(𝑝𝑁, 1, 0) ∈ ℕ0 ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
186184, 69, 185sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
187186nn0ge0d 12506 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
188 iffalse 4497 . . . . . . . . . . 11 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 0)
189188breq1d 5117 . . . . . . . . . 10 𝑝 ≤ ((2 · 𝑁) − 1) → (if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
190187, 189syl5ibrcom 247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
191181, 190pm2.61d 179 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
192 eqid 2729 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
193192prmorcht 27088 . . . . . . . . . . . 12 (((2 · 𝑁) − 1) ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
19437, 193syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
195194oveq2d 7403 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
196195adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
197 nncn 12194 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
198197exp1d 14106 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
199198ifeq1d 4508 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
200199mpteq2ia 5202 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
201200eqcomi 2738 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
202182a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑛 ∈ ℙ) → 1 ∈ ℕ0)
203202ralrimiva 3125 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
20437adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((2 · 𝑁) − 1) ∈ ℕ)
205 eqidd 2730 . . . . . . . . . 10 (𝑛 = 𝑝 → 1 = 1)
206201, 203, 204, 67, 205pcmpt 16863 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
207196, 206eqtrd 2764 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
208 efchtcl 27021 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (exp‘(θ‘𝑁)) ∈ ℕ)
2099, 208syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℕ)
210209adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (exp‘(θ‘𝑁)) ∈ ℕ)
211 nnz 12550 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℤ)
212 nnne0 12220 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ≠ 0)
213211, 212jca 511 . . . . . . . . . . 11 ((exp‘(θ‘𝑁)) ∈ ℕ → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
214210, 213syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
215 nnz 12550 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℤ)
216 nnne0 12220 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≠ 0)
217215, 216jca 511 . . . . . . . . . . 11 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
21868, 217syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
219 pcmul 16822 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0) ∧ ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0)) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
22067, 214, 218, 219syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
221192prmorcht 27088 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁))
222221oveq2d 7403 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
223222adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
224 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
225201, 203, 224, 67, 205pcmpt 16863 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)) = if(𝑝𝑁, 1, 0))
226223, 225eqtrd 2764 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = if(𝑝𝑁, 1, 0))
227226oveq1d 7402 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
228220, 227eqtrd 2764 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
229191, 207, 2283brtr4d 5139 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
230229ralrimiva 3125 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
231 efchtcl 27021 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℝ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
2326, 231syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
233232nnzd 12556 . . . . . . 7 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ)
234209, 52nnmulcld 12239 . . . . . . . 8 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ)
235234nnzd 12556 . . . . . . 7 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ)
236 pc2dvds 16850 . . . . . . 7 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
237233, 235, 236syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
238230, 237mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
239 dvdsle 16280 . . . . . 6 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
240233, 234, 239syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
241238, 240mpd 15 . . . 4 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
24211recnd 11202 . . . . . 6 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℂ)
24354recnd 11202 . . . . . 6 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
244 efadd 16060 . . . . . 6 (((θ‘𝑁) ∈ ℂ ∧ (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ) → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
245242, 243, 244syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
24653reeflogd 26533 . . . . . 6 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) = (((2 · 𝑁) − 1)C𝑁))
247246oveq2d 7403 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
248245, 247eqtrd 2764 . . . 4 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
249241, 248breqtrrd 5135 . . 3 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))))
250 efle 16086 . . . 4 (((θ‘((2 · 𝑁) − 1)) ∈ ℝ ∧ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ) → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
2518, 55, 250syl2anc 584 . . 3 (𝑁 ∈ ℕ → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
252249, 251mpbird 257 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))
253 fzfid 13938 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...((2 · 𝑁) − 1)) ∈ Fin)
254 elfzelz 13485 . . . . . . . . . . 11 (𝑘 ∈ (0...((2 · 𝑁) − 1)) → 𝑘 ∈ ℤ)
255 bccl 14287 . . . . . . . . . . 11 ((((2 · 𝑁) − 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
25639, 254, 255syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
257256nn0red 12504 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℝ)
258256nn0ge0d 12506 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → 0 ≤ (((2 · 𝑁) − 1)C𝑘))
259 nn0uz 12835 . . . . . . . . . . . 12 0 = (ℤ‘0)
26032, 259eleqtrdi 2838 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
261 fzss1 13524 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
262260, 261syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
263 eluz 12807 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
264148, 81, 263syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
26548, 264mpbird 257 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ (ℤ𝑁))
266 fzss2 13525 . . . . . . . . . . 11 (((2 · 𝑁) − 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
267265, 266syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
268262, 267sstrd 3957 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
269253, 257, 258, 268fsumless 15762 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) ≤ Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
27032nn0zd 12555 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
271 bccmpl 14274 . . . . . . . . . . . . . . 15 ((((2 · 𝑁) − 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
27239, 148, 271syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
273107oveq2d 7403 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
274272, 273eqtrd 2764 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
27552nncnd 12202 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℂ)
276274, 275eqeltrrd 2829 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ)
277 oveq2 7395 . . . . . . . . . . . . 13 (𝑘 = (𝑁 − 1) → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
278277fsum1 15713 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ) → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
279270, 276, 278syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
280279, 274eqtr4d 2767 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
281280oveq1d 7402 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
28221, 104npcand 11537 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
283 uzid 12808 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
284270, 283syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
285 peano2uz 12860 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
286284, 285syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
287282, 286eqeltrrd 2829 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
288268sselda 3946 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → 𝑘 ∈ (0...((2 · 𝑁) − 1)))
289256nn0cnd 12505 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
290288, 289syldan 591 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
291 oveq2 7395 . . . . . . . . . 10 (𝑘 = 𝑁 → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
292287, 290, 291fsumm1 15717 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) = (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)))
2932752timesd 12425 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
294281, 292, 2933eqtr4rd 2775 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘))
295 binom11 15798 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℕ0 → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
29639, 295syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
297269, 294, 2963brtr4d 5139 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) ≤ (2↑((2 · 𝑁) − 1)))
298 mulcom 11154 . . . . . . . 8 ((2 ∈ ℂ ∧ (((2 · 𝑁) − 1)C𝑁) ∈ ℂ) → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
29916, 275, 298sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
30030oveq2d 7403 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = (2↑((2 · (𝑁 − 1)) + 1)))
301 expp1 14033 . . . . . . . . 9 ((2 ∈ ℂ ∧ (2 · (𝑁 − 1)) ∈ ℕ0) → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30216, 34, 301sylancr 587 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30316a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30431a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
305303, 32, 304expmuld 14114 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = ((2↑2)↑(𝑁 − 1)))
306 sq2 14162 . . . . . . . . . . 11 (2↑2) = 4
307306oveq1i 7397 . . . . . . . . . 10 ((2↑2)↑(𝑁 − 1)) = (4↑(𝑁 − 1))
308305, 307eqtrdi 2780 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = (4↑(𝑁 − 1)))
309308oveq1d 7402 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2 · (𝑁 − 1))) · 2) = ((4↑(𝑁 − 1)) · 2))
310300, 302, 3093eqtrd 2768 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = ((4↑(𝑁 − 1)) · 2))
311297, 299, 3103brtr3d 5138 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2))
31252nnred 12201 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ)
313 reexpcl 14043 . . . . . . . 8 ((4 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (4↑(𝑁 − 1)) ∈ ℝ)
31456, 32, 313sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) ∈ ℝ)
315 2re 12260 . . . . . . . . 9 2 ∈ ℝ
316 2pos 12289 . . . . . . . . 9 0 < 2
317315, 316pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
318317a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
319 lemul1 12034 . . . . . . 7 (((((2 · 𝑁) − 1)C𝑁) ∈ ℝ ∧ (4↑(𝑁 − 1)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
320312, 314, 318, 319syl3anc 1373 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
321311, 320mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)))
32260recni 11188 . . . . . . . 8 (log‘4) ∈ ℂ
323 mulcom 11154 . . . . . . . 8 (((log‘4) ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
324322, 103, 323sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
325324fveq2d 6862 . . . . . 6 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (exp‘((𝑁 − 1) · (log‘4))))
326 reexplog 26504 . . . . . . 7 ((4 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℤ) → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
32758, 270, 326sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
328325, 327eqtr4d 2767 . . . . 5 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (4↑(𝑁 − 1)))
329321, 246, 3283brtr4d 5139 . . . 4 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1))))
330 efle 16086 . . . . 5 (((log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ ∧ ((log‘4) · (𝑁 − 1)) ∈ ℝ) → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
33154, 63, 330syl2anc 584 . . . 4 (𝑁 ∈ ℕ → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
332329, 331mpbird 257 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)))
33354, 63, 11, 332leadd2dd 11793 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
3348, 55, 64, 252, 333letrd 11331 1 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  seqcseq 13966  cexp 14026  !cfa 14238  Ccbc 14267  Σcsu 15652  expce 16027  cdvds 16222  cprime 16641   pCnt cpc 16807  logclog 26463  θccht 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cht 27007
This theorem is referenced by:  chtub  27123
  Copyright terms: Public domain W3C validator