MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Structured version   Visualization version   GIF version

Theorem chtublem 25492
Description: Lemma for chtub 25493. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))

Proof of Theorem chtublem
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 11516 . . . . . 6 2 ∈ ℕ
2 nnmulcl 11466 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 677 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43nnred 11458 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
5 peano2rem 10756 . . . 4 ((2 · 𝑁) ∈ ℝ → ((2 · 𝑁) − 1) ∈ ℝ)
64, 5syl 17 . . 3 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℝ)
7 chtcl 25391 . . 3 (((2 · 𝑁) − 1) ∈ ℝ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
9 nnre 11449 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 chtcl 25391 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
119, 10syl 17 . . 3 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℝ)
12 nnnn0 11718 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 2m1e1 11576 . . . . . . . . . . 11 (2 − 1) = 1
1413oveq2i 6989 . . . . . . . . . 10 ((2 · 𝑁) − (2 − 1)) = ((2 · 𝑁) − 1)
153nncnd 11459 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
16 2cn 11518 . . . . . . . . . . . . 13 2 ∈ ℂ
17 ax-1cn 10395 . . . . . . . . . . . . 13 1 ∈ ℂ
18 subsub 10719 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
1916, 17, 18mp3an23 1432 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
2015, 19syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
21 nncn 11450 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 subdi 10876 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2316, 17, 22mp3an13 1431 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
25 2t1e2 11613 . . . . . . . . . . . . . 14 (2 · 1) = 2
2625oveq2i 6989 . . . . . . . . . . . . 13 ((2 · 𝑁) − (2 · 1)) = ((2 · 𝑁) − 2)
2724, 26syl6eq 2830 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2))
2827oveq1d 6993 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) = (((2 · 𝑁) − 2) + 1))
2920, 28eqtr4d 2817 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = ((2 · (𝑁 − 1)) + 1))
3014, 29syl5eqr 2828 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((2 · (𝑁 − 1)) + 1))
31 2nn0 11729 . . . . . . . . . . 11 2 ∈ ℕ0
32 nnm1nn0 11753 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
33 nn0mulcl 11748 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (2 · (𝑁 − 1)) ∈ ℕ0)
3431, 32, 33sylancr 578 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) ∈ ℕ0)
35 nn0p1nn 11751 . . . . . . . . . 10 ((2 · (𝑁 − 1)) ∈ ℕ0 → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3730, 36eqeltrd 2866 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ)
38 nnnn0 11718 . . . . . . . 8 (((2 · 𝑁) − 1) ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
40 1re 10441 . . . . . . . . . . 11 1 ∈ ℝ
4140a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
42 nnge1 11471 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
4341, 9, 9, 42leadd2dd 11058 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (𝑁 + 𝑁))
44212timesd 11693 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
4543, 44breqtrrd 4958 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (2 · 𝑁))
46 leaddsub 10919 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
479, 41, 4, 46syl3anc 1351 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
4845, 47mpbid 224 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≤ ((2 · 𝑁) − 1))
49 elfz2nn0 12817 . . . . . . 7 (𝑁 ∈ (0...((2 · 𝑁) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((2 · 𝑁) − 1) ∈ ℕ0𝑁 ≤ ((2 · 𝑁) − 1)))
5012, 39, 48, 49syl3anbrc 1323 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((2 · 𝑁) − 1)))
51 bccl2 13501 . . . . . 6 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5250, 51syl 17 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5352nnrpd 12249 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ+)
5453relogcld 24910 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ)
5511, 54readdcld 10471 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ)
56 4re 11528 . . . . . 6 4 ∈ ℝ
57 4pos 11557 . . . . . 6 0 < 4
5856, 57elrpii 12210 . . . . 5 4 ∈ ℝ+
59 relogcl 24863 . . . . 5 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
6058, 59ax-mp 5 . . . 4 (log‘4) ∈ ℝ
6132nn0red 11771 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
62 remulcl 10422 . . . 4 (((log‘4) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6360, 61, 62sylancr 578 . . 3 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6411, 63readdcld 10471 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))) ∈ ℝ)
65 iftrue 4357 . . . . . . . . . . . 12 (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
6665adantl 474 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
67 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6852adantr 473 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
6967, 68pccld 16046 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0)
70 nn0addge1 11758 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7140, 69, 70sylancr 578 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
72 iftrue 4357 . . . . . . . . . . . . . . . 16 (𝑝𝑁 → if(𝑝𝑁, 1, 0) = 1)
7372oveq1d 6993 . . . . . . . . . . . . . . 15 (𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7473breq2d 4942 . . . . . . . . . . . . . 14 (𝑝𝑁 → (1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7571, 74syl5ibrcom 239 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7675adantr 473 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
77 prmnn 15877 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7877ad2antlr 714 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
79 simprl 758 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ≤ ((2 · 𝑁) − 1))
80 prmz 15878 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8137nnzd 11902 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℤ)
82 eluz 12075 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8380, 81, 82syl2anr 587 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8483adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8579, 84mpbird 249 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((2 · 𝑁) − 1) ∈ (ℤ𝑝))
86 dvdsfac 15539 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℕ ∧ ((2 · 𝑁) − 1) ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
8778, 85, 86syl2anc 576 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
88 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
8939faccld 13462 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℕ)
90 pcelnn 16065 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9188, 89, 90syl2anr 587 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9291adantr 473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9387, 92mpbird 249 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ)
9493nnge1d 11491 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
95 iffalse 4360 . . . . . . . . . . . . . . . . 17 𝑝𝑁 → if(𝑝𝑁, 1, 0) = 0)
9695oveq1d 6993 . . . . . . . . . . . . . . . 16 𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9796ad2antll 716 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9869nn0cnd 11772 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
9998addid2d 10643 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
10099adantr 473 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
101 bcval2 13483 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10250, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10332nn0cnd 11772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
10417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℂ)
10544oveq1d 6993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((𝑁 + 𝑁) − 1))
10621, 21, 104, 105assraddsubd 10857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = (𝑁 + (𝑁 − 1)))
10721, 103, 106mvrladdd 10856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) − 𝑁) = (𝑁 − 1))
108107fveq2d 6505 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (!‘(((2 · 𝑁) − 1) − 𝑁)) = (!‘(𝑁 − 1)))
109108oveq1d 6993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 − 1)) · (!‘𝑁)))
110109oveq2d 6994 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
111102, 110eqtrd 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
112111adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
113112oveq2d 6994 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))))
114 nnz 11820 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℤ)
115 nnne0 11477 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ≠ 0)
116114, 115jca 504 . . . . . . . . . . . . . . . . . . . . 21 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11789, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
118117adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11932faccld 13462 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
12012faccld 13462 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
121119, 120nnmulcld 11496 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
122121adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
123 pcdiv 16048 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0) ∧ ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
12467, 118, 122, 123syl3anc 1351 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
125 nnz 11820 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℤ)
126 nnne0 11477 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0)
127125, 126jca 504 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘(𝑁 − 1)) ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
128119, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
129128adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
130 nnz 11820 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
131 nnne0 11477 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ≠ 0)
132130, 131jca 504 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
134133adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
135 pcmul 16047 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0) ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0)) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
13667, 129, 134, 135syl3anc 1351 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
137136oveq2d 6994 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
138113, 124, 1373eqtrd 2818 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
139138adantr 473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
140 simprr 760 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝𝑁)
141 prmfac1 15922 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘𝑁)) → 𝑝𝑁)
1421413expia 1101 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
14312, 142sylan 572 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
144143adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
145140, 144mtod 190 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘𝑁))
14680adantl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
147129simpld 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘(𝑁 − 1)) ∈ ℤ)
148 nnz 11820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
149148adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
150 dvdsmultr1 15510 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℤ ∧ (!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
151146, 147, 149, 150syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
152 facnn2 13460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
153152adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
154153breq2d 4942 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) ↔ 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
155151, 154sylibrd 251 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
156155adantr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
157145, 156mtod 190 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘(𝑁 − 1)))
158 pceq0 16066 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘(𝑁 − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
15988, 119, 158syl2anr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
160159adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
161157, 160mpbird 249 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘(𝑁 − 1))) = 0)
162 pceq0 16066 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘𝑁) ∈ ℕ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
16388, 120, 162syl2anr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
164163adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
165145, 164mpbird 249 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘𝑁)) = 0)
166161, 165oveq12d 6996 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = (0 + 0))
167 00id 10617 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
168166, 167syl6eq 2830 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = 0)
169168oveq2d 6994 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0))
170 pccl 16045 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
17188, 89, 170syl2anr 587 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
172171nn0cnd 11772 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℂ)
173172subid1d 10789 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
174173adantr 473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
175139, 169, 1743eqtrd 2818 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17697, 100, 1753eqtrd 2818 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17794, 176breqtrrd 4958 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
178177expr 449 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (¬ 𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
17976, 178pm2.61d 172 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
18066, 179eqbrtrd 4952 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
181180ex 405 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
182 1nn0 11728 . . . . . . . . . . . . 13 1 ∈ ℕ0
183 0nn0 11727 . . . . . . . . . . . . 13 0 ∈ ℕ0
184182, 183ifcli 4397 . . . . . . . . . . . 12 if(𝑝𝑁, 1, 0) ∈ ℕ0
185 nn0addcl 11747 . . . . . . . . . . . 12 ((if(𝑝𝑁, 1, 0) ∈ ℕ0 ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
186184, 69, 185sylancr 578 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
187186nn0ge0d 11773 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
188 iffalse 4360 . . . . . . . . . . 11 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 0)
189188breq1d 4940 . . . . . . . . . 10 𝑝 ≤ ((2 · 𝑁) − 1) → (if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
190187, 189syl5ibrcom 239 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
191181, 190pm2.61d 172 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
192 eqid 2778 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
193192prmorcht 25460 . . . . . . . . . . . 12 (((2 · 𝑁) − 1) ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
19437, 193syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
195194oveq2d 6994 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
196195adantr 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
197 nncn 11450 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
198197exp1d 13323 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
199198ifeq1d 4369 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
200199mpteq2ia 5019 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
201200eqcomi 2787 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
202182a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑛 ∈ ℙ) → 1 ∈ ℕ0)
203202ralrimiva 3132 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
20437adantr 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((2 · 𝑁) − 1) ∈ ℕ)
205 eqidd 2779 . . . . . . . . . 10 (𝑛 = 𝑝 → 1 = 1)
206201, 203, 204, 67, 205pcmpt 16087 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
207196, 206eqtrd 2814 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
208 efchtcl 25393 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (exp‘(θ‘𝑁)) ∈ ℕ)
2099, 208syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℕ)
210209adantr 473 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (exp‘(θ‘𝑁)) ∈ ℕ)
211 nnz 11820 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℤ)
212 nnne0 11477 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ≠ 0)
213211, 212jca 504 . . . . . . . . . . 11 ((exp‘(θ‘𝑁)) ∈ ℕ → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
214210, 213syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
215 nnz 11820 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℤ)
216 nnne0 11477 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≠ 0)
217215, 216jca 504 . . . . . . . . . . 11 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
21868, 217syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
219 pcmul 16047 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0) ∧ ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0)) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
22067, 214, 218, 219syl3anc 1351 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
221192prmorcht 25460 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁))
222221oveq2d 6994 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
223222adantr 473 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
224 simpl 475 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
225201, 203, 224, 67, 205pcmpt 16087 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)) = if(𝑝𝑁, 1, 0))
226223, 225eqtrd 2814 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = if(𝑝𝑁, 1, 0))
227226oveq1d 6993 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
228220, 227eqtrd 2814 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
229191, 207, 2283brtr4d 4962 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
230229ralrimiva 3132 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
231 efchtcl 25393 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℝ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
2326, 231syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
233232nnzd 11902 . . . . . . 7 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ)
234209, 52nnmulcld 11496 . . . . . . . 8 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ)
235234nnzd 11902 . . . . . . 7 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ)
236 pc2dvds 16074 . . . . . . 7 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
237233, 235, 236syl2anc 576 . . . . . 6 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
238230, 237mpbird 249 . . . . 5 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
239 dvdsle 15523 . . . . . 6 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
240233, 234, 239syl2anc 576 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
241238, 240mpd 15 . . . 4 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
24211recnd 10470 . . . . . 6 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℂ)
24354recnd 10470 . . . . . 6 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
244 efadd 15310 . . . . . 6 (((θ‘𝑁) ∈ ℂ ∧ (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ) → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
245242, 243, 244syl2anc 576 . . . . 5 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
24653reeflogd 24911 . . . . . 6 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) = (((2 · 𝑁) − 1)C𝑁))
247246oveq2d 6994 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
248245, 247eqtrd 2814 . . . 4 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
249241, 248breqtrrd 4958 . . 3 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))))
250 efle 15334 . . . 4 (((θ‘((2 · 𝑁) − 1)) ∈ ℝ ∧ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ) → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
2518, 55, 250syl2anc 576 . . 3 (𝑁 ∈ ℕ → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
252249, 251mpbird 249 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))
253 fzfid 13159 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...((2 · 𝑁) − 1)) ∈ Fin)
254 elfzelz 12727 . . . . . . . . . . 11 (𝑘 ∈ (0...((2 · 𝑁) − 1)) → 𝑘 ∈ ℤ)
255 bccl 13500 . . . . . . . . . . 11 ((((2 · 𝑁) − 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
25639, 254, 255syl2an 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
257256nn0red 11771 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℝ)
258256nn0ge0d 11773 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → 0 ≤ (((2 · 𝑁) − 1)C𝑘))
259 nn0uz 12097 . . . . . . . . . . . 12 0 = (ℤ‘0)
26032, 259syl6eleq 2876 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
261 fzss1 12765 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
262260, 261syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
263 eluz 12075 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
264148, 81, 263syl2anc 576 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
26548, 264mpbird 249 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ (ℤ𝑁))
266 fzss2 12766 . . . . . . . . . . 11 (((2 · 𝑁) − 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
267265, 266syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
268262, 267sstrd 3870 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
269253, 257, 258, 268fsumless 15014 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) ≤ Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
27032nn0zd 11901 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
271 bccmpl 13487 . . . . . . . . . . . . . . 15 ((((2 · 𝑁) − 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
27239, 148, 271syl2anc 576 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
273107oveq2d 6994 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
274272, 273eqtrd 2814 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
27552nncnd 11459 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℂ)
276274, 275eqeltrrd 2867 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ)
277 oveq2 6986 . . . . . . . . . . . . 13 (𝑘 = (𝑁 − 1) → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
278277fsum1 14965 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ) → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
279270, 276, 278syl2anc 576 . . . . . . . . . . 11 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
280279, 274eqtr4d 2817 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
281280oveq1d 6993 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
28221, 104npcand 10804 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
283 uzid 12076 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
284270, 283syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
285 peano2uz 12118 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
286284, 285syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
287282, 286eqeltrrd 2867 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
288268sselda 3860 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → 𝑘 ∈ (0...((2 · 𝑁) − 1)))
289256nn0cnd 11772 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
290288, 289syldan 582 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
291 oveq2 6986 . . . . . . . . . 10 (𝑘 = 𝑁 → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
292287, 290, 291fsumm1 14969 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) = (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)))
2932752timesd 11693 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
294281, 292, 2933eqtr4rd 2825 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘))
295 binom11 15050 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℕ0 → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
29639, 295syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
297269, 294, 2963brtr4d 4962 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) ≤ (2↑((2 · 𝑁) − 1)))
298 mulcom 10423 . . . . . . . 8 ((2 ∈ ℂ ∧ (((2 · 𝑁) − 1)C𝑁) ∈ ℂ) → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
29916, 275, 298sylancr 578 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
30030oveq2d 6994 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = (2↑((2 · (𝑁 − 1)) + 1)))
301 expp1 13254 . . . . . . . . 9 ((2 ∈ ℂ ∧ (2 · (𝑁 − 1)) ∈ ℕ0) → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30216, 34, 301sylancr 578 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30316a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30431a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
305303, 32, 304expmuld 13331 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = ((2↑2)↑(𝑁 − 1)))
306 sq2 13378 . . . . . . . . . . 11 (2↑2) = 4
307306oveq1i 6988 . . . . . . . . . 10 ((2↑2)↑(𝑁 − 1)) = (4↑(𝑁 − 1))
308305, 307syl6eq 2830 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = (4↑(𝑁 − 1)))
309308oveq1d 6993 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2 · (𝑁 − 1))) · 2) = ((4↑(𝑁 − 1)) · 2))
310300, 302, 3093eqtrd 2818 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = ((4↑(𝑁 − 1)) · 2))
311297, 299, 3103brtr3d 4961 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2))
31252nnred 11458 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ)
313 reexpcl 13264 . . . . . . . 8 ((4 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (4↑(𝑁 − 1)) ∈ ℝ)
31456, 32, 313sylancr 578 . . . . . . 7 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) ∈ ℝ)
315 2re 11517 . . . . . . . . 9 2 ∈ ℝ
316 2pos 11553 . . . . . . . . 9 0 < 2
317315, 316pm3.2i 463 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
318317a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
319 lemul1 11295 . . . . . . 7 (((((2 · 𝑁) − 1)C𝑁) ∈ ℝ ∧ (4↑(𝑁 − 1)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
320312, 314, 318, 319syl3anc 1351 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
321311, 320mpbird 249 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)))
32260recni 10456 . . . . . . . 8 (log‘4) ∈ ℂ
323 mulcom 10423 . . . . . . . 8 (((log‘4) ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
324322, 103, 323sylancr 578 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
325324fveq2d 6505 . . . . . 6 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (exp‘((𝑁 − 1) · (log‘4))))
326 reexplog 24882 . . . . . . 7 ((4 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℤ) → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
32758, 270, 326sylancr 578 . . . . . 6 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
328325, 327eqtr4d 2817 . . . . 5 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (4↑(𝑁 − 1)))
329321, 246, 3283brtr4d 4962 . . . 4 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1))))
330 efle 15334 . . . . 5 (((log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ ∧ ((log‘4) · (𝑁 − 1)) ∈ ℝ) → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
33154, 63, 330syl2anc 576 . . . 4 (𝑁 ∈ ℕ → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
332329, 331mpbird 249 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)))
33354, 63, 11, 332leadd2dd 11058 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
3348, 55, 64, 252, 333letrd 10599 1 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wss 3831  ifcif 4351   class class class wbr 4930  cmpt 5009  cfv 6190  (class class class)co 6978  cc 10335  cr 10336  0cc0 10337  1c1 10338   + caddc 10340   · cmul 10342   < clt 10476  cle 10477  cmin 10672   / cdiv 11100  cn 11441  2c2 11498  4c4 11500  0cn0 11710  cz 11796  cuz 12061  +crp 12207  ...cfz 12711  seqcseq 13187  cexp 13247  !cfa 13451  Ccbc 13480  Σcsu 14906  expce 15278  cdvds 15470  cprime 15874   pCnt cpc 16032  logclog 24842  θccht 25373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ioc 12562  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-fac 13452  df-bc 13481  df-hash 13509  df-shft 14290  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-limsup 14692  df-clim 14709  df-rlim 14710  df-sum 14907  df-ef 15284  df-sin 15286  df-cos 15287  df-pi 15289  df-dvds 15471  df-gcd 15707  df-prm 15875  df-pc 16033  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-mulg 18015  df-cntz 18221  df-cmn 18671  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-cnfld 20251  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-lp 21451  df-perf 21452  df-cn 21542  df-cnp 21543  df-haus 21630  df-tx 21877  df-hmeo 22070  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-xms 22636  df-ms 22637  df-tms 22638  df-cncf 23192  df-limc 24170  df-dv 24171  df-log 24844  df-cht 25379
This theorem is referenced by:  chtub  25493
  Copyright terms: Public domain W3C validator