MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtublem Structured version   Visualization version   GIF version

Theorem chtublem 27273
Description: Lemma for chtub 27274. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
chtublem (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))

Proof of Theorem chtublem
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12366 . . . . . 6 2 ∈ ℕ
2 nnmulcl 12317 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
31, 2mpan 689 . . . . 5 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
43nnred 12308 . . . 4 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
5 peano2rem 11603 . . . 4 ((2 · 𝑁) ∈ ℝ → ((2 · 𝑁) − 1) ∈ ℝ)
64, 5syl 17 . . 3 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℝ)
7 chtcl 27170 . . 3 (((2 · 𝑁) − 1) ∈ ℝ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ∈ ℝ)
9 nnre 12300 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 chtcl 27170 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
119, 10syl 17 . . 3 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℝ)
12 nnnn0 12560 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 2m1e1 12419 . . . . . . . . . . 11 (2 − 1) = 1
1413oveq2i 7459 . . . . . . . . . 10 ((2 · 𝑁) − (2 − 1)) = ((2 · 𝑁) − 1)
153nncnd 12309 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
16 2cn 12368 . . . . . . . . . . . . 13 2 ∈ ℂ
17 ax-1cn 11242 . . . . . . . . . . . . 13 1 ∈ ℂ
18 subsub 11566 . . . . . . . . . . . . 13 (((2 · 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
1916, 17, 18mp3an23 1453 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
2015, 19syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = (((2 · 𝑁) − 2) + 1))
21 nncn 12301 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
22 subdi 11723 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2316, 17, 22mp3an13 1452 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
2421, 23syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − (2 · 1)))
25 2t1e2 12456 . . . . . . . . . . . . . 14 (2 · 1) = 2
2625oveq2i 7459 . . . . . . . . . . . . 13 ((2 · 𝑁) − (2 · 1)) = ((2 · 𝑁) − 2)
2724, 26eqtrdi 2796 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2))
2827oveq1d 7463 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) = (((2 · 𝑁) − 2) + 1))
2920, 28eqtr4d 2783 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) − (2 − 1)) = ((2 · (𝑁 − 1)) + 1))
3014, 29eqtr3id 2794 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((2 · (𝑁 − 1)) + 1))
31 2nn0 12570 . . . . . . . . . . 11 2 ∈ ℕ0
32 nnm1nn0 12594 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
33 nn0mulcl 12589 . . . . . . . . . . 11 ((2 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (2 · (𝑁 − 1)) ∈ ℕ0)
3431, 32, 33sylancr 586 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 − 1)) ∈ ℕ0)
35 nn0p1nn 12592 . . . . . . . . . 10 ((2 · (𝑁 − 1)) ∈ ℕ0 → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3634, 35syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((2 · (𝑁 − 1)) + 1) ∈ ℕ)
3730, 36eqeltrd 2844 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ)
38 nnnn0 12560 . . . . . . . 8 (((2 · 𝑁) − 1) ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℕ0)
40 1re 11290 . . . . . . . . . . 11 1 ∈ ℝ
4140a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
42 nnge1 12321 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
4341, 9, 9, 42leadd2dd 11905 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (𝑁 + 𝑁))
44212timesd 12536 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
4543, 44breqtrrd 5194 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≤ (2 · 𝑁))
46 leaddsub 11766 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ) → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
479, 41, 4, 46syl3anc 1371 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) ≤ (2 · 𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
4845, 47mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≤ ((2 · 𝑁) − 1))
49 elfz2nn0 13675 . . . . . . 7 (𝑁 ∈ (0...((2 · 𝑁) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((2 · 𝑁) − 1) ∈ ℕ0𝑁 ≤ ((2 · 𝑁) − 1)))
5012, 39, 48, 49syl3anbrc 1343 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((2 · 𝑁) − 1)))
51 bccl2 14372 . . . . . 6 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5250, 51syl 17 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
5352nnrpd 13097 . . . 4 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ+)
5453relogcld 26683 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ)
5511, 54readdcld 11319 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ)
56 4re 12377 . . . . . 6 4 ∈ ℝ
57 4pos 12400 . . . . . 6 0 < 4
5856, 57elrpii 13060 . . . . 5 4 ∈ ℝ+
59 relogcl 26635 . . . . 5 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
6058, 59ax-mp 5 . . . 4 (log‘4) ∈ ℝ
6132nn0red 12614 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
62 remulcl 11269 . . . 4 (((log‘4) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6360, 61, 62sylancr 586 . . 3 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) ∈ ℝ)
6411, 63readdcld 11319 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))) ∈ ℝ)
65 iftrue 4554 . . . . . . . . . . . 12 (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
6665adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 1)
67 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6852adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) ∈ ℕ)
6967, 68pccld 16897 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0)
70 nn0addge1 12599 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7140, 69, 70sylancr 586 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
72 iftrue 4554 . . . . . . . . . . . . . . . 16 (𝑝𝑁 → if(𝑝𝑁, 1, 0) = 1)
7372oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
7473breq2d 5178 . . . . . . . . . . . . . 14 (𝑝𝑁 → (1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 1 ≤ (1 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7571, 74syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
7675adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
77 prmnn 16721 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7877ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
79 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ≤ ((2 · 𝑁) − 1))
80 prmz 16722 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8137nnzd 12666 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ ℤ)
82 eluz 12917 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8380, 81, 82syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8483adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (((2 · 𝑁) − 1) ∈ (ℤ𝑝) ↔ 𝑝 ≤ ((2 · 𝑁) − 1)))
8579, 84mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((2 · 𝑁) − 1) ∈ (ℤ𝑝))
86 dvdsfac 16374 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℕ ∧ ((2 · 𝑁) − 1) ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
8778, 85, 86syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 𝑝 ∥ (!‘((2 · 𝑁) − 1)))
88 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
8939faccld 14333 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℕ)
90 pcelnn 16917 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9188, 89, 90syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9291adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ ↔ 𝑝 ∥ (!‘((2 · 𝑁) − 1))))
9387, 92mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ)
9493nnge1d 12341 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
95 iffalse 4557 . . . . . . . . . . . . . . . . 17 𝑝𝑁 → if(𝑝𝑁, 1, 0) = 0)
9695oveq1d 7463 . . . . . . . . . . . . . . . 16 𝑝𝑁 → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9796ad2antll 728 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
9869nn0cnd 12615 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
9998addlidd 11491 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
10099adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (0 + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))
101 bcval2 14354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (0...((2 · 𝑁) − 1)) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10250, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))))
10332nn0cnd 12615 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
10417a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℂ)
10544oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = ((𝑁 + 𝑁) − 1))
10621, 21, 104, 105assraddsubd 11704 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) = (𝑁 + (𝑁 − 1)))
10721, 103, 106mvrladdd 11703 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) − 𝑁) = (𝑁 − 1))
108107fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (!‘(((2 · 𝑁) − 1) − 𝑁)) = (!‘(𝑁 − 1)))
109108oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 − 1)) · (!‘𝑁)))
110109oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) / ((!‘(((2 · 𝑁) − 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
111102, 110eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
112111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (((2 · 𝑁) − 1)C𝑁) = ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁))))
113112oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))))
114 nnz 12660 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ∈ ℤ)
115 nnne0 12327 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → (!‘((2 · 𝑁) − 1)) ≠ 0)
116114, 115jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((!‘((2 · 𝑁) − 1)) ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11789, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0))
11932faccld 14333 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ)
12012faccld 14333 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
121119, 120nnmulcld 12346 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
122121adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ)
123 pcdiv 16899 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ ((!‘((2 · 𝑁) − 1)) ∈ ℤ ∧ (!‘((2 · 𝑁) − 1)) ≠ 0) ∧ ((!‘(𝑁 − 1)) · (!‘𝑁)) ∈ ℕ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
12467, 118, 122, 123syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘((2 · 𝑁) − 1)) / ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))))
125 nnz 12660 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℤ)
126 nnne0 12327 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘(𝑁 − 1)) ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0)
127125, 126jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘(𝑁 − 1)) ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
128119, 127syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
129128adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0))
130 nnz 12660 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
131 nnne0 12327 . . . . . . . . . . . . . . . . . . . . . . 23 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ≠ 0)
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
134133adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0))
135 pcmul 16898 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ ((!‘(𝑁 − 1)) ∈ ℤ ∧ (!‘(𝑁 − 1)) ≠ 0) ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0)) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
13667, 129, 134, 135syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁))) = ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))))
137136oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − (𝑝 pCnt ((!‘(𝑁 − 1)) · (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
138113, 124, 1373eqtrd 2784 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
139138adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))))
140 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝𝑁)
141 prmfac1 16767 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘𝑁)) → 𝑝𝑁)
1421413expia 1121 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
14312, 142sylan 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
144143adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘𝑁) → 𝑝𝑁))
145140, 144mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘𝑁))
14680adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
147129simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘(𝑁 − 1)) ∈ ℤ)
148 nnz 12660 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
149148adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
150 dvdsmultr1 16344 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℤ ∧ (!‘(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
151146, 147, 149, 150syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
152 facnn2 14331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
153152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁))
154153breq2d 5178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘𝑁) ↔ 𝑝 ∥ ((!‘(𝑁 − 1)) · 𝑁)))
155151, 154sylibrd 259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
156155adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 ∥ (!‘(𝑁 − 1)) → 𝑝 ∥ (!‘𝑁)))
157145, 156mtod 198 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ¬ 𝑝 ∥ (!‘(𝑁 − 1)))
158 pceq0 16918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘(𝑁 − 1)) ∈ ℕ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
15988, 119, 158syl2anr 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
160159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) = 0 ↔ ¬ 𝑝 ∥ (!‘(𝑁 − 1))))
161157, 160mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘(𝑁 − 1))) = 0)
162 pceq0 16918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ (!‘𝑁) ∈ ℕ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
16388, 120, 162syl2anr 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
164163adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘𝑁)) = 0 ↔ ¬ 𝑝 ∥ (!‘𝑁)))
165145, 164mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (!‘𝑁)) = 0)
166161, 165oveq12d 7466 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = (0 + 0))
167 00id 11465 . . . . . . . . . . . . . . . . . 18 (0 + 0) = 0
168166, 167eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁))) = 0)
169168oveq2d 7464 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − ((𝑝 pCnt (!‘(𝑁 − 1))) + (𝑝 pCnt (!‘𝑁)))) = ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0))
170 pccl 16896 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (!‘((2 · 𝑁) − 1)) ∈ ℕ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
17188, 89, 170syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℕ0)
172171nn0cnd 12615 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (!‘((2 · 𝑁) − 1))) ∈ ℂ)
173172subid1d 11636 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
174173adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt (!‘((2 · 𝑁) − 1))) − 0) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
175139, 169, 1743eqtrd 2784 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17697, 100, 1753eqtrd 2784 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (𝑝 pCnt (!‘((2 · 𝑁) − 1))))
17794, 176breqtrrd 5194 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ ((2 · 𝑁) − 1) ∧ ¬ 𝑝𝑁)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
178177expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → (¬ 𝑝𝑁 → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
17976, 178pm2.61d 179 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → 1 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
18066, 179eqbrtrd 5188 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ≤ ((2 · 𝑁) − 1)) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
181180ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
182 1nn0 12569 . . . . . . . . . . . . 13 1 ∈ ℕ0
183 0nn0 12568 . . . . . . . . . . . . 13 0 ∈ ℕ0
184182, 183ifcli 4595 . . . . . . . . . . . 12 if(𝑝𝑁, 1, 0) ∈ ℕ0
185 nn0addcl 12588 . . . . . . . . . . . 12 ((if(𝑝𝑁, 1, 0) ∈ ℕ0 ∧ (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ0) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
186184, 69, 185sylancr 586 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ∈ ℕ0)
187186nn0ge0d 12616 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
188 iffalse 4557 . . . . . . . . . . 11 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) = 0)
189188breq1d 5176 . . . . . . . . . 10 𝑝 ≤ ((2 · 𝑁) − 1) → (if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) ↔ 0 ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
190187, 189syl5ibrcom 247 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ≤ ((2 · 𝑁) − 1) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁)))))
191181, 190pm2.61d 179 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0) ≤ (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
192 eqid 2740 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
193192prmorcht 27239 . . . . . . . . . . . 12 (((2 · 𝑁) − 1) ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
19437, 193syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1)))
195194oveq2d 7464 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
196195adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))))
197 nncn 12301 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
198197exp1d 14191 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
199198ifeq1d 4567 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → if(𝑛 ∈ ℙ, (𝑛↑1), 1) = if(𝑛 ∈ ℙ, 𝑛, 1))
200199mpteq2ia 5269 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
201200eqcomi 2749 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑1), 1))
202182a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑛 ∈ ℙ) → 1 ∈ ℕ0)
203202ralrimiva 3152 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ 1 ∈ ℕ0)
20437adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((2 · 𝑁) − 1) ∈ ℕ)
205 eqidd 2741 . . . . . . . . . 10 (𝑛 = 𝑝 → 1 = 1)
206201, 203, 204, 67, 205pcmpt 16939 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘((2 · 𝑁) − 1))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
207196, 206eqtrd 2780 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) = if(𝑝 ≤ ((2 · 𝑁) − 1), 1, 0))
208 efchtcl 27172 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (exp‘(θ‘𝑁)) ∈ ℕ)
2099, 208syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℕ)
210209adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (exp‘(θ‘𝑁)) ∈ ℕ)
211 nnz 12660 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ∈ ℤ)
212 nnne0 12327 . . . . . . . . . . . 12 ((exp‘(θ‘𝑁)) ∈ ℕ → (exp‘(θ‘𝑁)) ≠ 0)
213211, 212jca 511 . . . . . . . . . . 11 ((exp‘(θ‘𝑁)) ∈ ℕ → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
214210, 213syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0))
215 nnz 12660 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℤ)
216 nnne0 12327 . . . . . . . . . . . 12 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≠ 0)
217215, 216jca 511 . . . . . . . . . . 11 ((((2 · 𝑁) − 1)C𝑁) ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
21868, 217syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0))
219 pcmul 16898 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ((exp‘(θ‘𝑁)) ∈ ℤ ∧ (exp‘(θ‘𝑁)) ≠ 0) ∧ ((((2 · 𝑁) − 1)C𝑁) ∈ ℤ ∧ (((2 · 𝑁) − 1)C𝑁) ≠ 0)) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
22067, 214, 218, 219syl3anc 1371 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
221192prmorcht 27239 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (exp‘(θ‘𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁))
222221oveq2d 7464 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
223222adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)))
224 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
225201, 203, 224, 67, 205pcmpt 16939 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1)))‘𝑁)) = if(𝑝𝑁, 1, 0))
226223, 225eqtrd 2780 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘𝑁))) = if(𝑝𝑁, 1, 0))
227226oveq1d 7463 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (exp‘(θ‘𝑁))) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
228220, 227eqtrd 2780 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))) = (if(𝑝𝑁, 1, 0) + (𝑝 pCnt (((2 · 𝑁) − 1)C𝑁))))
229191, 207, 2283brtr4d 5198 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
230229ralrimiva 3152 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
231 efchtcl 27172 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℝ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
2326, 231syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℕ)
233232nnzd 12666 . . . . . . 7 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ)
234209, 52nnmulcld 12346 . . . . . . . 8 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ)
235234nnzd 12666 . . . . . . 7 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ)
236 pc2dvds 16926 . . . . . . 7 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℤ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
237233, 235, 236syl2anc 583 . . . . . 6 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (exp‘(θ‘((2 · 𝑁) − 1)))) ≤ (𝑝 pCnt ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))))
238230, 237mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
239 dvdsle 16358 . . . . . 6 (((exp‘(θ‘((2 · 𝑁) − 1))) ∈ ℤ ∧ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) ∈ ℕ) → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
240233, 234, 239syl2anc 583 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘((2 · 𝑁) − 1))) ∥ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)) → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁))))
241238, 240mpd 15 . . . 4 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
24211recnd 11318 . . . . . 6 (𝑁 ∈ ℕ → (θ‘𝑁) ∈ ℂ)
24354recnd 11318 . . . . . 6 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ)
244 efadd 16142 . . . . . 6 (((θ‘𝑁) ∈ ℂ ∧ (log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℂ) → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
245242, 243, 244syl2anc 583 . . . . 5 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))))
24653reeflogd 26684 . . . . . 6 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) = (((2 · 𝑁) − 1)C𝑁))
247246oveq2d 7464 . . . . 5 (𝑁 ∈ ℕ → ((exp‘(θ‘𝑁)) · (exp‘(log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
248245, 247eqtrd 2780 . . . 4 (𝑁 ∈ ℕ → (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))) = ((exp‘(θ‘𝑁)) · (((2 · 𝑁) − 1)C𝑁)))
249241, 248breqtrrd 5194 . . 3 (𝑁 ∈ ℕ → (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁)))))
250 efle 16166 . . . 4 (((θ‘((2 · 𝑁) − 1)) ∈ ℝ ∧ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ∈ ℝ) → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
2518, 55, 250syl2anc 583 . . 3 (𝑁 ∈ ℕ → ((θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ↔ (exp‘(θ‘((2 · 𝑁) − 1))) ≤ (exp‘((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))))
252249, 251mpbird 257 . 2 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))))
253 fzfid 14024 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...((2 · 𝑁) − 1)) ∈ Fin)
254 elfzelz 13584 . . . . . . . . . . 11 (𝑘 ∈ (0...((2 · 𝑁) − 1)) → 𝑘 ∈ ℤ)
255 bccl 14371 . . . . . . . . . . 11 ((((2 · 𝑁) − 1) ∈ ℕ0𝑘 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
25639, 254, 255syl2an 595 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℕ0)
257256nn0red 12614 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℝ)
258256nn0ge0d 12616 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → 0 ≤ (((2 · 𝑁) − 1)C𝑘))
259 nn0uz 12945 . . . . . . . . . . . 12 0 = (ℤ‘0)
26032, 259eleqtrdi 2854 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
261 fzss1 13623 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
262260, 261syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...𝑁))
263 eluz 12917 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((2 · 𝑁) − 1) ∈ ℤ) → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
264148, 81, 263syl2anc 583 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1) ∈ (ℤ𝑁) ↔ 𝑁 ≤ ((2 · 𝑁) − 1)))
26548, 264mpbird 257 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2 · 𝑁) − 1) ∈ (ℤ𝑁))
266 fzss2 13624 . . . . . . . . . . 11 (((2 · 𝑁) − 1) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
267265, 266syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
268262, 267sstrd 4019 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)...𝑁) ⊆ (0...((2 · 𝑁) − 1)))
269253, 257, 258, 268fsumless 15844 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) ≤ Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
27032nn0zd 12665 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
271 bccmpl 14358 . . . . . . . . . . . . . . 15 ((((2 · 𝑁) − 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
27239, 148, 271syl2anc 583 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)))
273107oveq2d 7464 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(((2 · 𝑁) − 1) − 𝑁)) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
274272, 273eqtrd 2780 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
27552nncnd 12309 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℂ)
276274, 275eqeltrrd 2845 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ)
277 oveq2 7456 . . . . . . . . . . . . 13 (𝑘 = (𝑁 − 1) → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
278277fsum1 15795 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ (((2 · 𝑁) − 1)C(𝑁 − 1)) ∈ ℂ) → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
279270, 276, 278syl2anc 583 . . . . . . . . . . 11 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C(𝑁 − 1)))
280279, 274eqtr4d 2783 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
281280oveq1d 7463 . . . . . . . . 9 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
28221, 104npcand 11651 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
283 uzid 12918 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
284270, 283syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
285 peano2uz 12966 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
286284, 285syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
287282, 286eqeltrrd 2845 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
288268sselda 4008 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → 𝑘 ∈ (0...((2 · 𝑁) − 1)))
289256nn0cnd 12615 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((2 · 𝑁) − 1))) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
290288, 289syldan 590 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ((𝑁 − 1)...𝑁)) → (((2 · 𝑁) − 1)C𝑘) ∈ ℂ)
291 oveq2 7456 . . . . . . . . . 10 (𝑘 = 𝑁 → (((2 · 𝑁) − 1)C𝑘) = (((2 · 𝑁) − 1)C𝑁))
292287, 290, 291fsumm1 15799 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘) = (Σ𝑘 ∈ ((𝑁 − 1)...(𝑁 − 1))(((2 · 𝑁) − 1)C𝑘) + (((2 · 𝑁) − 1)C𝑁)))
2932752timesd 12536 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) + (((2 · 𝑁) − 1)C𝑁)))
294281, 292, 2933eqtr4rd 2791 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = Σ𝑘 ∈ ((𝑁 − 1)...𝑁)(((2 · 𝑁) − 1)C𝑘))
295 binom11 15880 . . . . . . . . 9 (((2 · 𝑁) − 1) ∈ ℕ0 → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
29639, 295syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = Σ𝑘 ∈ (0...((2 · 𝑁) − 1))(((2 · 𝑁) − 1)C𝑘))
297269, 294, 2963brtr4d 5198 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) ≤ (2↑((2 · 𝑁) − 1)))
298 mulcom 11270 . . . . . . . 8 ((2 ∈ ℂ ∧ (((2 · 𝑁) − 1)C𝑁) ∈ ℂ) → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
29916, 275, 298sylancr 586 . . . . . . 7 (𝑁 ∈ ℕ → (2 · (((2 · 𝑁) − 1)C𝑁)) = ((((2 · 𝑁) − 1)C𝑁) · 2))
30030oveq2d 7464 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = (2↑((2 · (𝑁 − 1)) + 1)))
301 expp1 14119 . . . . . . . . 9 ((2 ∈ ℂ ∧ (2 · (𝑁 − 1)) ∈ ℕ0) → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30216, 34, 301sylancr 586 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2 · (𝑁 − 1)) + 1)) = ((2↑(2 · (𝑁 − 1))) · 2))
30316a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30431a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
305303, 32, 304expmuld 14199 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = ((2↑2)↑(𝑁 − 1)))
306 sq2 14246 . . . . . . . . . . 11 (2↑2) = 4
307306oveq1i 7458 . . . . . . . . . 10 ((2↑2)↑(𝑁 − 1)) = (4↑(𝑁 − 1))
308305, 307eqtrdi 2796 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2 · (𝑁 − 1))) = (4↑(𝑁 − 1)))
309308oveq1d 7463 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2 · (𝑁 − 1))) · 2) = ((4↑(𝑁 − 1)) · 2))
310300, 302, 3093eqtrd 2784 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2 · 𝑁) − 1)) = ((4↑(𝑁 − 1)) · 2))
311297, 299, 3103brtr3d 5197 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2))
31252nnred 12308 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ∈ ℝ)
313 reexpcl 14129 . . . . . . . 8 ((4 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (4↑(𝑁 − 1)) ∈ ℝ)
31456, 32, 313sylancr 586 . . . . . . 7 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) ∈ ℝ)
315 2re 12367 . . . . . . . . 9 2 ∈ ℝ
316 2pos 12396 . . . . . . . . 9 0 < 2
317315, 316pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
318317a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
319 lemul1 12146 . . . . . . 7 (((((2 · 𝑁) − 1)C𝑁) ∈ ℝ ∧ (4↑(𝑁 − 1)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
320312, 314, 318, 319syl3anc 1371 . . . . . 6 (𝑁 ∈ ℕ → ((((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)) ↔ ((((2 · 𝑁) − 1)C𝑁) · 2) ≤ ((4↑(𝑁 − 1)) · 2)))
321311, 320mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) − 1)C𝑁) ≤ (4↑(𝑁 − 1)))
32260recni 11304 . . . . . . . 8 (log‘4) ∈ ℂ
323 mulcom 11270 . . . . . . . 8 (((log‘4) ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
324322, 103, 323sylancr 586 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘4) · (𝑁 − 1)) = ((𝑁 − 1) · (log‘4)))
325324fveq2d 6924 . . . . . 6 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (exp‘((𝑁 − 1) · (log‘4))))
326 reexplog 26655 . . . . . . 7 ((4 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℤ) → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
32758, 270, 326sylancr 586 . . . . . 6 (𝑁 ∈ ℕ → (4↑(𝑁 − 1)) = (exp‘((𝑁 − 1) · (log‘4))))
328325, 327eqtr4d 2783 . . . . 5 (𝑁 ∈ ℕ → (exp‘((log‘4) · (𝑁 − 1))) = (4↑(𝑁 − 1)))
329321, 246, 3283brtr4d 5198 . . . 4 (𝑁 ∈ ℕ → (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1))))
330 efle 16166 . . . . 5 (((log‘(((2 · 𝑁) − 1)C𝑁)) ∈ ℝ ∧ ((log‘4) · (𝑁 − 1)) ∈ ℝ) → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
33154, 63, 330syl2anc 583 . . . 4 (𝑁 ∈ ℕ → ((log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)) ↔ (exp‘(log‘(((2 · 𝑁) − 1)C𝑁))) ≤ (exp‘((log‘4) · (𝑁 − 1)))))
332329, 331mpbird 257 . . 3 (𝑁 ∈ ℕ → (log‘(((2 · 𝑁) − 1)C𝑁)) ≤ ((log‘4) · (𝑁 − 1)))
33354, 63, 11, 332leadd2dd 11905 . 2 (𝑁 ∈ ℕ → ((θ‘𝑁) + (log‘(((2 · 𝑁) − 1)C𝑁))) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
3348, 55, 64, 252, 333letrd 11447 1 (𝑁 ∈ ℕ → (θ‘((2 · 𝑁) − 1)) ≤ ((θ‘𝑁) + ((log‘4) · (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  4c4 12350  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  seqcseq 14052  cexp 14112  !cfa 14322  Ccbc 14351  Σcsu 15734  expce 16109  cdvds 16302  cprime 16718   pCnt cpc 16883  logclog 26614  θccht 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cht 27158
This theorem is referenced by:  chtub  27274
  Copyright terms: Public domain W3C validator