MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem3 Structured version   Visualization version   GIF version

Theorem aaliou3lem3 25409
Description: Lemma for aaliou3 25416. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem3 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Distinct variable groups:   𝐹,𝑏,𝑐   𝐴,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem3
StepHypRef Expression
1 eqid 2738 . . 3 (ℤ𝐴) = (ℤ𝐴)
2 nnz 12272 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 uzid 12526 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
5 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
65aaliou3lem1 25407 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℝ)
7 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
85, 7aaliou3lem2 25408 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ (0(,](𝐺𝑏)))
9 0xr 10953 . . . . . 6 0 ∈ ℝ*
10 elioc2 13071 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐺𝑏) ∈ ℝ) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
119, 6, 10sylancr 586 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
128, 11mpbid 231 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏)))
1312simp1d 1140 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ)
14 halfcn 12118 . . . . . 6 (1 / 2) ∈ ℂ
1514a1i 11 . . . . 5 (𝐴 ∈ ℕ → (1 / 2) ∈ ℂ)
16 halfre 12117 . . . . . . . . 9 (1 / 2) ∈ ℝ
17 halfgt0 12119 . . . . . . . . 9 0 < (1 / 2)
1816, 17elrpii 12662 . . . . . . . 8 (1 / 2) ∈ ℝ+
19 rprege0 12674 . . . . . . . 8 ((1 / 2) ∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)))
20 absid 14936 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2118, 19, 20mp2b 10 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
22 halflt1 12121 . . . . . . 7 (1 / 2) < 1
2321, 22eqbrtri 5091 . . . . . 6 (abs‘(1 / 2)) < 1
2423a1i 11 . . . . 5 (𝐴 ∈ ℕ → (abs‘(1 / 2)) < 1)
25 2rp 12664 . . . . . . 7 2 ∈ ℝ+
26 nnnn0 12170 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2726faccld 13926 . . . . . . . . 9 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
2827nnzd 12354 . . . . . . . 8 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
2928znegcld 12357 . . . . . . 7 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
30 rpexpcl 13729 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
3125, 29, 30sylancr 586 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
3231rpcnd 12703 . . . . 5 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
332, 15, 24, 32, 5geolim3 25404 . . . 4 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
34 seqex 13651 . . . . 5 seq𝐴( + , 𝐺) ∈ V
35 ovex 7288 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈ V
3634, 35breldm 5806 . . . 4 (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3733, 36syl 17 . . 3 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3812simp2d 1141 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 < (𝐹𝑏))
3913, 38elrpd 12698 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ+)
4039rpge0d 12705 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 ≤ (𝐹𝑏))
4112simp3d 1142 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ≤ (𝐺𝑏))
421, 4, 6, 13, 37, 40, 41cvgcmp 15456 . 2 (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ )
43 eqidd 2739 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) = (𝐹𝑏))
441, 1, 4, 43, 39, 42isumrpcl 15483 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+)
45 eqidd 2739 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) = (𝐺𝑏))
461, 2, 43, 13, 45, 6, 41, 42, 37isumle 15484 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏))
476recnd 10934 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℂ)
481, 2, 45, 47, 33isumclim 15397 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
49 1mhlfehlf 12122 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
5049oveq2i 7266 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = ((2↑-(!‘𝐴)) / (1 / 2))
51 2cn 11978 . . . . . . . 8 2 ∈ ℂ
52 mulcl 10886 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5332, 51, 52sylancl 585 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5453div1d 11673 . . . . . 6 (𝐴 ∈ ℕ → (((2↑-(!‘𝐴)) · 2) / 1) = ((2↑-(!‘𝐴)) · 2))
55 1rp 12663 . . . . . . . . 9 1 ∈ ℝ+
56 rpcnne0 12677 . . . . . . . . 9 (1 ∈ ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0))
5755, 56ax-mp 5 . . . . . . . 8 (1 ∈ ℂ ∧ 1 ≠ 0)
58 2cnne0 12113 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divdiv2 11617 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6057, 58, 59mp3an23 1451 . . . . . . 7 ((2↑-(!‘𝐴)) ∈ ℂ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6132, 60syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
62 mulcom 10888 . . . . . . 7 ((2 ∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6351, 32, 62sylancr 586 . . . . . 6 (𝐴 ∈ ℕ → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6454, 61, 633eqtr4d 2788 . . . . 5 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (2 · (2↑-(!‘𝐴))))
6550, 64syl5eq 2791 . . . 4 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = (2 · (2↑-(!‘𝐴))))
6648, 65eqtrd 2778 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = (2 · (2↑-(!‘𝐴))))
6746, 66breqtrd 5096 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴))))
6842, 44, 673jca 1126 1 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  +crp 12659  (,]cioc 13009  seqcseq 13649  cexp 13710  !cfa 13915  abscabs 14873  cli 15121  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioc 13013  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  aaliou3lem4  25411  aaliou3lem7  25414
  Copyright terms: Public domain W3C validator