Proof of Theorem aaliou3lem3
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(ℤ≥‘𝐴) = (ℤ≥‘𝐴) |
2 | | nnz 12272 |
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
3 | | uzid 12526 |
. . . 4
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
(ℤ≥‘𝐴)) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
(ℤ≥‘𝐴)) |
5 | | aaliou3lem.a |
. . . 4
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑐
− 𝐴)))) |
6 | 5 | aaliou3lem1 25407 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐺‘𝑏) ∈ ℝ) |
7 | | aaliou3lem.b |
. . . . . 6
⊢ 𝐹 = (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) |
8 | 5, 7 | aaliou3lem2 25408 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑏) ∈ (0(,](𝐺‘𝑏))) |
9 | | 0xr 10953 |
. . . . . 6
⊢ 0 ∈
ℝ* |
10 | | elioc2 13071 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ (𝐺‘𝑏) ∈ ℝ) → ((𝐹‘𝑏) ∈ (0(,](𝐺‘𝑏)) ↔ ((𝐹‘𝑏) ∈ ℝ ∧ 0 < (𝐹‘𝑏) ∧ (𝐹‘𝑏) ≤ (𝐺‘𝑏)))) |
11 | 9, 6, 10 | sylancr 586 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → ((𝐹‘𝑏) ∈ (0(,](𝐺‘𝑏)) ↔ ((𝐹‘𝑏) ∈ ℝ ∧ 0 < (𝐹‘𝑏) ∧ (𝐹‘𝑏) ≤ (𝐺‘𝑏)))) |
12 | 8, 11 | mpbid 231 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → ((𝐹‘𝑏) ∈ ℝ ∧ 0 < (𝐹‘𝑏) ∧ (𝐹‘𝑏) ≤ (𝐺‘𝑏))) |
13 | 12 | simp1d 1140 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑏) ∈ ℝ) |
14 | | halfcn 12118 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
15 | 14 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (1 / 2)
∈ ℂ) |
16 | | halfre 12117 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
17 | | halfgt0 12119 |
. . . . . . . . 9
⊢ 0 < (1
/ 2) |
18 | 16, 17 | elrpii 12662 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℝ+ |
19 | | rprege0 12674 |
. . . . . . . 8
⊢ ((1 / 2)
∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 /
2))) |
20 | | absid 14936 |
. . . . . . . 8
⊢ (((1 / 2)
∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 /
2)) |
21 | 18, 19, 20 | mp2b 10 |
. . . . . . 7
⊢
(abs‘(1 / 2)) = (1 / 2) |
22 | | halflt1 12121 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
23 | 21, 22 | eqbrtri 5091 |
. . . . . 6
⊢
(abs‘(1 / 2)) < 1 |
24 | 23 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(abs‘(1 / 2)) < 1) |
25 | | 2rp 12664 |
. . . . . . 7
⊢ 2 ∈
ℝ+ |
26 | | nnnn0 12170 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
27 | 26 | faccld 13926 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℕ) |
28 | 27 | nnzd 12354 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℤ) |
29 | 28 | znegcld 12357 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
-(!‘𝐴) ∈
ℤ) |
30 | | rpexpcl 13729 |
. . . . . . 7
⊢ ((2
∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) →
(2↑-(!‘𝐴))
∈ ℝ+) |
31 | 25, 29, 30 | sylancr 586 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴))
∈ ℝ+) |
32 | 31 | rpcnd 12703 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴))
∈ ℂ) |
33 | 2, 15, 24, 32, 5 | geolim3 25404 |
. . . 4
⊢ (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 /
2)))) |
34 | | seqex 13651 |
. . . . 5
⊢ seq𝐴( + , 𝐺) ∈ V |
35 | | ovex 7288 |
. . . . 5
⊢
((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈
V |
36 | 34, 35 | breldm 5806 |
. . . 4
⊢ (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) →
seq𝐴( + , 𝐺) ∈ dom ⇝ ) |
37 | 33, 36 | syl 17 |
. . 3
⊢ (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ ) |
38 | 12 | simp2d 1141 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → 0 < (𝐹‘𝑏)) |
39 | 13, 38 | elrpd 12698 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑏) ∈
ℝ+) |
40 | 39 | rpge0d 12705 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → 0 ≤ (𝐹‘𝑏)) |
41 | 12 | simp3d 1142 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑏) ≤ (𝐺‘𝑏)) |
42 | 1, 4, 6, 13, 37, 40, 41 | cvgcmp 15456 |
. 2
⊢ (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ ) |
43 | | eqidd 2739 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑏) = (𝐹‘𝑏)) |
44 | 1, 1, 4, 43, 39, 42 | isumrpcl 15483 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐹‘𝑏) ∈
ℝ+) |
45 | | eqidd 2739 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐺‘𝑏) = (𝐺‘𝑏)) |
46 | 1, 2, 43, 13, 45, 6, 41, 42, 37 | isumle 15484 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐹‘𝑏) ≤ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐺‘𝑏)) |
47 | 6 | recnd 10934 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑏 ∈
(ℤ≥‘𝐴)) → (𝐺‘𝑏) ∈ ℂ) |
48 | 1, 2, 45, 47, 33 | isumclim 15397 |
. . . 4
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐺‘𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2)))) |
49 | | 1mhlfehlf 12122 |
. . . . . 6
⊢ (1
− (1 / 2)) = (1 / 2) |
50 | 49 | oveq2i 7266 |
. . . . 5
⊢
((2↑-(!‘𝐴)) / (1 − (1 / 2))) =
((2↑-(!‘𝐴)) / (1
/ 2)) |
51 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
52 | | mulcl 10886 |
. . . . . . . 8
⊢
(((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ)
→ ((2↑-(!‘𝐴)) · 2) ∈
ℂ) |
53 | 32, 51, 52 | sylancl 585 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴))
· 2) ∈ ℂ) |
54 | 53 | div1d 11673 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(((2↑-(!‘𝐴))
· 2) / 1) = ((2↑-(!‘𝐴)) · 2)) |
55 | | 1rp 12663 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
56 | | rpcnne0 12677 |
. . . . . . . . 9
⊢ (1 ∈
ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0)) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . 8
⊢ (1 ∈
ℂ ∧ 1 ≠ 0) |
58 | | 2cnne0 12113 |
. . . . . . . 8
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
59 | | divdiv2 11617 |
. . . . . . . 8
⊢
(((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ
∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
((2↑-(!‘𝐴)) / (1
/ 2)) = (((2↑-(!‘𝐴)) · 2) / 1)) |
60 | 57, 58, 59 | mp3an23 1451 |
. . . . . . 7
⊢
((2↑-(!‘𝐴)) ∈ ℂ →
((2↑-(!‘𝐴)) / (1
/ 2)) = (((2↑-(!‘𝐴)) · 2) / 1)) |
61 | 32, 60 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴)) / (1
/ 2)) = (((2↑-(!‘𝐴)) · 2) / 1)) |
62 | | mulcom 10888 |
. . . . . . 7
⊢ ((2
∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 ·
(2↑-(!‘𝐴))) =
((2↑-(!‘𝐴))
· 2)) |
63 | 51, 32, 62 | sylancr 586 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (2
· (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2)) |
64 | 54, 61, 63 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴)) / (1
/ 2)) = (2 · (2↑-(!‘𝐴)))) |
65 | 50, 64 | syl5eq 2791 |
. . . 4
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴)) / (1
− (1 / 2))) = (2 · (2↑-(!‘𝐴)))) |
66 | 48, 65 | eqtrd 2778 |
. . 3
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐺‘𝑏) = (2 · (2↑-(!‘𝐴)))) |
67 | 46, 66 | breqtrd 5096 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴)))) |
68 | 42, 44, 67 | 3jca 1126 |
1
⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧
Σ𝑏 ∈
(ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) |