MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem3 Structured version   Visualization version   GIF version

Theorem aaliou3lem3 26259
Description: Lemma for aaliou3 26266. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem3 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Distinct variable groups:   𝐹,𝑏,𝑐   𝐴,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem3
StepHypRef Expression
1 eqid 2730 . . 3 (ℤ𝐴) = (ℤ𝐴)
2 nnz 12557 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 uzid 12815 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
5 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
65aaliou3lem1 26257 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℝ)
7 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
85, 7aaliou3lem2 26258 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ (0(,](𝐺𝑏)))
9 0xr 11228 . . . . . 6 0 ∈ ℝ*
10 elioc2 13377 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐺𝑏) ∈ ℝ) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
119, 6, 10sylancr 587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
128, 11mpbid 232 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏)))
1312simp1d 1142 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ)
14 halfcn 12403 . . . . . 6 (1 / 2) ∈ ℂ
1514a1i 11 . . . . 5 (𝐴 ∈ ℕ → (1 / 2) ∈ ℂ)
16 halfre 12402 . . . . . . . . 9 (1 / 2) ∈ ℝ
17 halfgt0 12404 . . . . . . . . 9 0 < (1 / 2)
1816, 17elrpii 12961 . . . . . . . 8 (1 / 2) ∈ ℝ+
19 rprege0 12974 . . . . . . . 8 ((1 / 2) ∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)))
20 absid 15269 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2118, 19, 20mp2b 10 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
22 halflt1 12406 . . . . . . 7 (1 / 2) < 1
2321, 22eqbrtri 5131 . . . . . 6 (abs‘(1 / 2)) < 1
2423a1i 11 . . . . 5 (𝐴 ∈ ℕ → (abs‘(1 / 2)) < 1)
25 2rp 12963 . . . . . . 7 2 ∈ ℝ+
26 nnnn0 12456 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2726faccld 14256 . . . . . . . . 9 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
2827nnzd 12563 . . . . . . . 8 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
2928znegcld 12647 . . . . . . 7 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
30 rpexpcl 14052 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
3125, 29, 30sylancr 587 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
3231rpcnd 13004 . . . . 5 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
332, 15, 24, 32, 5geolim3 26254 . . . 4 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
34 seqex 13975 . . . . 5 seq𝐴( + , 𝐺) ∈ V
35 ovex 7423 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈ V
3634, 35breldm 5875 . . . 4 (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3733, 36syl 17 . . 3 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3812simp2d 1143 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 < (𝐹𝑏))
3913, 38elrpd 12999 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ+)
4039rpge0d 13006 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 ≤ (𝐹𝑏))
4112simp3d 1144 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ≤ (𝐺𝑏))
421, 4, 6, 13, 37, 40, 41cvgcmp 15789 . 2 (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ )
43 eqidd 2731 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) = (𝐹𝑏))
441, 1, 4, 43, 39, 42isumrpcl 15816 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+)
45 eqidd 2731 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) = (𝐺𝑏))
461, 2, 43, 13, 45, 6, 41, 42, 37isumle 15817 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏))
476recnd 11209 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℂ)
481, 2, 45, 47, 33isumclim 15730 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
49 1mhlfehlf 12408 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
5049oveq2i 7401 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = ((2↑-(!‘𝐴)) / (1 / 2))
51 2cn 12268 . . . . . . . 8 2 ∈ ℂ
52 mulcl 11159 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5332, 51, 52sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5453div1d 11957 . . . . . 6 (𝐴 ∈ ℕ → (((2↑-(!‘𝐴)) · 2) / 1) = ((2↑-(!‘𝐴)) · 2))
55 1rp 12962 . . . . . . . . 9 1 ∈ ℝ+
56 rpcnne0 12977 . . . . . . . . 9 (1 ∈ ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0))
5755, 56ax-mp 5 . . . . . . . 8 (1 ∈ ℂ ∧ 1 ≠ 0)
58 2cnne0 12398 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divdiv2 11901 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6057, 58, 59mp3an23 1455 . . . . . . 7 ((2↑-(!‘𝐴)) ∈ ℂ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6132, 60syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
62 mulcom 11161 . . . . . . 7 ((2 ∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6351, 32, 62sylancr 587 . . . . . 6 (𝐴 ∈ ℕ → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6454, 61, 633eqtr4d 2775 . . . . 5 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (2 · (2↑-(!‘𝐴))))
6550, 64eqtrid 2777 . . . 4 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = (2 · (2↑-(!‘𝐴))))
6648, 65eqtrd 2765 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = (2 · (2↑-(!‘𝐴))))
6746, 66breqtrd 5136 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴))))
6842, 44, 673jca 1128 1 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cuz 12800  +crp 12958  (,]cioc 13314  seqcseq 13973  cexp 14033  !cfa 14245  abscabs 15207  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioc 13318  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  aaliou3lem4  26261  aaliou3lem7  26264
  Copyright terms: Public domain W3C validator