MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem3 Structured version   Visualization version   GIF version

Theorem aaliou3lem3 25504
Description: Lemma for aaliou3 25511. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem3 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Distinct variable groups:   𝐹,𝑏,𝑐   𝐴,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem3
StepHypRef Expression
1 eqid 2738 . . 3 (ℤ𝐴) = (ℤ𝐴)
2 nnz 12342 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 uzid 12597 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
5 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
65aaliou3lem1 25502 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℝ)
7 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
85, 7aaliou3lem2 25503 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ (0(,](𝐺𝑏)))
9 0xr 11022 . . . . . 6 0 ∈ ℝ*
10 elioc2 13142 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐺𝑏) ∈ ℝ) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
119, 6, 10sylancr 587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
128, 11mpbid 231 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏)))
1312simp1d 1141 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ)
14 halfcn 12188 . . . . . 6 (1 / 2) ∈ ℂ
1514a1i 11 . . . . 5 (𝐴 ∈ ℕ → (1 / 2) ∈ ℂ)
16 halfre 12187 . . . . . . . . 9 (1 / 2) ∈ ℝ
17 halfgt0 12189 . . . . . . . . 9 0 < (1 / 2)
1816, 17elrpii 12733 . . . . . . . 8 (1 / 2) ∈ ℝ+
19 rprege0 12745 . . . . . . . 8 ((1 / 2) ∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)))
20 absid 15008 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2118, 19, 20mp2b 10 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
22 halflt1 12191 . . . . . . 7 (1 / 2) < 1
2321, 22eqbrtri 5095 . . . . . 6 (abs‘(1 / 2)) < 1
2423a1i 11 . . . . 5 (𝐴 ∈ ℕ → (abs‘(1 / 2)) < 1)
25 2rp 12735 . . . . . . 7 2 ∈ ℝ+
26 nnnn0 12240 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2726faccld 13998 . . . . . . . . 9 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
2827nnzd 12425 . . . . . . . 8 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
2928znegcld 12428 . . . . . . 7 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
30 rpexpcl 13801 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
3125, 29, 30sylancr 587 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
3231rpcnd 12774 . . . . 5 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
332, 15, 24, 32, 5geolim3 25499 . . . 4 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
34 seqex 13723 . . . . 5 seq𝐴( + , 𝐺) ∈ V
35 ovex 7308 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈ V
3634, 35breldm 5817 . . . 4 (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3733, 36syl 17 . . 3 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3812simp2d 1142 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 < (𝐹𝑏))
3913, 38elrpd 12769 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ+)
4039rpge0d 12776 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 ≤ (𝐹𝑏))
4112simp3d 1143 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ≤ (𝐺𝑏))
421, 4, 6, 13, 37, 40, 41cvgcmp 15528 . 2 (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ )
43 eqidd 2739 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) = (𝐹𝑏))
441, 1, 4, 43, 39, 42isumrpcl 15555 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+)
45 eqidd 2739 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) = (𝐺𝑏))
461, 2, 43, 13, 45, 6, 41, 42, 37isumle 15556 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏))
476recnd 11003 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℂ)
481, 2, 45, 47, 33isumclim 15469 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
49 1mhlfehlf 12192 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
5049oveq2i 7286 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = ((2↑-(!‘𝐴)) / (1 / 2))
51 2cn 12048 . . . . . . . 8 2 ∈ ℂ
52 mulcl 10955 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5332, 51, 52sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5453div1d 11743 . . . . . 6 (𝐴 ∈ ℕ → (((2↑-(!‘𝐴)) · 2) / 1) = ((2↑-(!‘𝐴)) · 2))
55 1rp 12734 . . . . . . . . 9 1 ∈ ℝ+
56 rpcnne0 12748 . . . . . . . . 9 (1 ∈ ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0))
5755, 56ax-mp 5 . . . . . . . 8 (1 ∈ ℂ ∧ 1 ≠ 0)
58 2cnne0 12183 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divdiv2 11687 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6057, 58, 59mp3an23 1452 . . . . . . 7 ((2↑-(!‘𝐴)) ∈ ℂ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6132, 60syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
62 mulcom 10957 . . . . . . 7 ((2 ∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6351, 32, 62sylancr 587 . . . . . 6 (𝐴 ∈ ℕ → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6454, 61, 633eqtr4d 2788 . . . . 5 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (2 · (2↑-(!‘𝐴))))
6550, 64eqtrid 2790 . . . 4 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = (2 · (2↑-(!‘𝐴))))
6648, 65eqtrd 2778 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = (2 · (2↑-(!‘𝐴))))
6746, 66breqtrd 5100 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴))))
6842, 44, 673jca 1127 1 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cuz 12582  +crp 12730  (,]cioc 13080  seqcseq 13721  cexp 13782  !cfa 13987  abscabs 14945  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioc 13084  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  aaliou3lem4  25506  aaliou3lem7  25509
  Copyright terms: Public domain W3C validator