MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem3 Structured version   Visualization version   GIF version

Theorem aaliou3lem3 26404
Description: Lemma for aaliou3 26411. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem3 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Distinct variable groups:   𝐹,𝑏,𝑐   𝐴,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem3
StepHypRef Expression
1 eqid 2740 . . 3 (ℤ𝐴) = (ℤ𝐴)
2 nnz 12660 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 uzid 12918 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
5 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
65aaliou3lem1 26402 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℝ)
7 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
85, 7aaliou3lem2 26403 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ (0(,](𝐺𝑏)))
9 0xr 11337 . . . . . 6 0 ∈ ℝ*
10 elioc2 13470 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐺𝑏) ∈ ℝ) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
119, 6, 10sylancr 586 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
128, 11mpbid 232 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏)))
1312simp1d 1142 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ)
14 halfcn 12508 . . . . . 6 (1 / 2) ∈ ℂ
1514a1i 11 . . . . 5 (𝐴 ∈ ℕ → (1 / 2) ∈ ℂ)
16 halfre 12507 . . . . . . . . 9 (1 / 2) ∈ ℝ
17 halfgt0 12509 . . . . . . . . 9 0 < (1 / 2)
1816, 17elrpii 13060 . . . . . . . 8 (1 / 2) ∈ ℝ+
19 rprege0 13072 . . . . . . . 8 ((1 / 2) ∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)))
20 absid 15345 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2118, 19, 20mp2b 10 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
22 halflt1 12511 . . . . . . 7 (1 / 2) < 1
2321, 22eqbrtri 5187 . . . . . 6 (abs‘(1 / 2)) < 1
2423a1i 11 . . . . 5 (𝐴 ∈ ℕ → (abs‘(1 / 2)) < 1)
25 2rp 13062 . . . . . . 7 2 ∈ ℝ+
26 nnnn0 12560 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2726faccld 14333 . . . . . . . . 9 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
2827nnzd 12666 . . . . . . . 8 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
2928znegcld 12749 . . . . . . 7 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
30 rpexpcl 14131 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
3125, 29, 30sylancr 586 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
3231rpcnd 13101 . . . . 5 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
332, 15, 24, 32, 5geolim3 26399 . . . 4 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
34 seqex 14054 . . . . 5 seq𝐴( + , 𝐺) ∈ V
35 ovex 7481 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈ V
3634, 35breldm 5933 . . . 4 (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3733, 36syl 17 . . 3 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3812simp2d 1143 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 < (𝐹𝑏))
3913, 38elrpd 13096 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ+)
4039rpge0d 13103 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 ≤ (𝐹𝑏))
4112simp3d 1144 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ≤ (𝐺𝑏))
421, 4, 6, 13, 37, 40, 41cvgcmp 15864 . 2 (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ )
43 eqidd 2741 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) = (𝐹𝑏))
441, 1, 4, 43, 39, 42isumrpcl 15891 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+)
45 eqidd 2741 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) = (𝐺𝑏))
461, 2, 43, 13, 45, 6, 41, 42, 37isumle 15892 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏))
476recnd 11318 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℂ)
481, 2, 45, 47, 33isumclim 15805 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
49 1mhlfehlf 12512 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
5049oveq2i 7459 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = ((2↑-(!‘𝐴)) / (1 / 2))
51 2cn 12368 . . . . . . . 8 2 ∈ ℂ
52 mulcl 11268 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5332, 51, 52sylancl 585 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5453div1d 12062 . . . . . 6 (𝐴 ∈ ℕ → (((2↑-(!‘𝐴)) · 2) / 1) = ((2↑-(!‘𝐴)) · 2))
55 1rp 13061 . . . . . . . . 9 1 ∈ ℝ+
56 rpcnne0 13075 . . . . . . . . 9 (1 ∈ ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0))
5755, 56ax-mp 5 . . . . . . . 8 (1 ∈ ℂ ∧ 1 ≠ 0)
58 2cnne0 12503 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
59 divdiv2 12006 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6057, 58, 59mp3an23 1453 . . . . . . 7 ((2↑-(!‘𝐴)) ∈ ℂ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6132, 60syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
62 mulcom 11270 . . . . . . 7 ((2 ∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6351, 32, 62sylancr 586 . . . . . 6 (𝐴 ∈ ℕ → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6454, 61, 633eqtr4d 2790 . . . . 5 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (2 · (2↑-(!‘𝐴))))
6550, 64eqtrid 2792 . . . 4 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = (2 · (2↑-(!‘𝐴))))
6648, 65eqtrd 2780 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = (2 · (2↑-(!‘𝐴))))
6746, 66breqtrd 5192 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴))))
6842, 44, 673jca 1128 1 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  cz 12639  cuz 12903  +crp 13057  (,]cioc 13408  seqcseq 14052  cexp 14112  !cfa 14322  abscabs 15283  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioc 13412  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  aaliou3lem4  26406  aaliou3lem7  26409
  Copyright terms: Public domain W3C validator