MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem4 Structured version   Visualization version   GIF version

Theorem lgsdir2lem4 26181
Description: Lemma for lgsdir2 26183. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))

Proof of Theorem lgsdir2lem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7235 . . 3 (𝐴 mod 8) ∈ V
21elpr 4554 . 2 ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
3 zre 12163 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
43ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐴 ∈ ℝ)
5 1red 10817 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 1 ∈ ℝ)
6 simplr 769 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈ ℤ)
7 8re 11909 . . . . . . . 8 8 ∈ ℝ
8 8pos 11925 . . . . . . . 8 0 < 8
97, 8elrpii 12572 . . . . . . 7 8 ∈ ℝ+
109a1i 11 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 8 ∈ ℝ+)
11 simpr 488 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = 1)
12 lgsdir2lem1 26178 . . . . . . . . 9 (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5))
1312simpli 487 . . . . . . . 8 ((1 mod 8) = 1 ∧ (-1 mod 8) = 7)
1413simpli 487 . . . . . . 7 (1 mod 8) = 1
1511, 14eqtr4di 2792 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (𝐴 mod 8) = (1 mod 8))
16 modmul1 13480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 8 ∈ ℝ+) ∧ (𝐴 mod 8) = (1 mod 8)) → ((𝐴 · 𝐵) mod 8) = ((1 · 𝐵) mod 8))
174, 5, 6, 10, 15, 16syl221anc 1383 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = ((1 · 𝐵) mod 8))
18 zcn 12164 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1918ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → 𝐵 ∈ ℂ)
2019mulid2d 10834 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (1 · 𝐵) = 𝐵)
2120oveq1d 7217 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((1 · 𝐵) mod 8) = (𝐵 mod 8))
2217, 21eqtrd 2774 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → ((𝐴 · 𝐵) mod 8) = (𝐵 mod 8))
2322eleq1d 2818 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 1) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
243ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐴 ∈ ℝ)
25 neg1rr 11928 . . . . . . . 8 -1 ∈ ℝ
2625a1i 11 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → -1 ∈ ℝ)
27 simplr 769 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈ ℤ)
289a1i 11 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 8 ∈ ℝ+)
29 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = 7)
3013simpri 489 . . . . . . . 8 (-1 mod 8) = 7
3129, 30eqtr4di 2792 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (𝐴 mod 8) = (-1 mod 8))
32 modmul1 13480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ -1 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 8 ∈ ℝ+) ∧ (𝐴 mod 8) = (-1 mod 8)) → ((𝐴 · 𝐵) mod 8) = ((-1 · 𝐵) mod 8))
3324, 26, 27, 28, 31, 32syl221anc 1383 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = ((-1 · 𝐵) mod 8))
3418ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → 𝐵 ∈ ℂ)
3534mulm1d 11267 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (-1 · 𝐵) = -𝐵)
3635oveq1d 7217 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-1 · 𝐵) mod 8) = (-𝐵 mod 8))
3733, 36eqtrd 2774 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((𝐴 · 𝐵) mod 8) = (-𝐵 mod 8))
3837eleq1d 2818 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
39 znegcl 12195 . . . . . . . 8 (𝐵 ∈ ℤ → -𝐵 ∈ ℤ)
40 oveq1 7209 . . . . . . . . . . 11 (𝑥 = -𝐵 → (𝑥 mod 8) = (-𝐵 mod 8))
4140eleq1d 2818 . . . . . . . . . 10 (𝑥 = -𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
42 negeq 11053 . . . . . . . . . . . 12 (𝑥 = -𝐵 → -𝑥 = --𝐵)
4342oveq1d 7217 . . . . . . . . . . 11 (𝑥 = -𝐵 → (-𝑥 mod 8) = (--𝐵 mod 8))
4443eleq1d 2818 . . . . . . . . . 10 (𝑥 = -𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (--𝐵 mod 8) ∈ {1, 7}))
4541, 44imbi12d 348 . . . . . . . . 9 (𝑥 = -𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔ ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7})))
46 zcn 12164 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
47 neg1cn 11927 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
48 mulcom 10798 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥 · -1) = (-1 · 𝑥))
4947, 48mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥 · -1) = (-1 · 𝑥))
50 mulm1 11256 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (-1 · 𝑥) = -𝑥)
5149, 50eqtrd 2774 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑥 · -1) = -𝑥)
5246, 51syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 · -1) = -𝑥)
5352adantr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 · -1) = -𝑥)
5453oveq1d 7217 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8))
55 zre 12163 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
5655adantr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 𝑥 ∈ ℝ)
57 1red 10817 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 1 ∈ ℝ)
58 neg1z 12196 . . . . . . . . . . . . . . . 16 -1 ∈ ℤ
5958a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → -1 ∈ ℤ)
609a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → 8 ∈ ℝ+)
61 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = 1)
6261, 14eqtr4di 2792 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (𝑥 mod 8) = (1 mod 8))
63 modmul1 13480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (-1 ∈ ℤ ∧ 8 ∈ ℝ+) ∧ (𝑥 mod 8) = (1 mod 8)) → ((𝑥 · -1) mod 8) = ((1 · -1) mod 8))
6456, 57, 59, 60, 62, 63syl221anc 1383 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → ((𝑥 · -1) mod 8) = ((1 · -1) mod 8))
6554, 64eqtr3d 2776 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = ((1 · -1) mod 8))
6647mulid2i 10821 . . . . . . . . . . . . . . 15 (1 · -1) = -1
6766oveq1i 7212 . . . . . . . . . . . . . 14 ((1 · -1) mod 8) = (-1 mod 8)
6867, 30eqtri 2762 . . . . . . . . . . . . 13 ((1 · -1) mod 8) = 7
6965, 68eqtrdi 2790 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 1) → (-𝑥 mod 8) = 7)
7069ex 416 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑥 mod 8) = 1 → (-𝑥 mod 8) = 7))
7152adantr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 · -1) = -𝑥)
7271oveq1d 7217 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = (-𝑥 mod 8))
7355adantr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 𝑥 ∈ ℝ)
7425a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈ ℝ)
7558a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → -1 ∈ ℤ)
769a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → 8 ∈ ℝ+)
77 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = 7)
7877, 30eqtr4di 2792 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (𝑥 mod 8) = (-1 mod 8))
79 modmul1 13480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ -1 ∈ ℝ) ∧ (-1 ∈ ℤ ∧ 8 ∈ ℝ+) ∧ (𝑥 mod 8) = (-1 mod 8)) → ((𝑥 · -1) mod 8) = ((-1 · -1) mod 8))
8073, 74, 75, 76, 78, 79syl221anc 1383 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → ((𝑥 · -1) mod 8) = ((-1 · -1) mod 8))
8172, 80eqtr3d 2776 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = ((-1 · -1) mod 8))
82 neg1mulneg1e1 12026 . . . . . . . . . . . . . . 15 (-1 · -1) = 1
8382oveq1i 7212 . . . . . . . . . . . . . 14 ((-1 · -1) mod 8) = (1 mod 8)
8483, 14eqtri 2762 . . . . . . . . . . . . 13 ((-1 · -1) mod 8) = 1
8581, 84eqtrdi 2790 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑥 mod 8) = 7) → (-𝑥 mod 8) = 1)
8685ex 416 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑥 mod 8) = 7 → (-𝑥 mod 8) = 1))
8770, 86orim12d 965 . . . . . . . . . 10 (𝑥 ∈ ℤ → (((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7) → ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1)))
88 ovex 7235 . . . . . . . . . . 11 (𝑥 mod 8) ∈ V
8988elpr 4554 . . . . . . . . . 10 ((𝑥 mod 8) ∈ {1, 7} ↔ ((𝑥 mod 8) = 1 ∨ (𝑥 mod 8) = 7))
90 ovex 7235 . . . . . . . . . . . 12 (-𝑥 mod 8) ∈ V
9190elpr 4554 . . . . . . . . . . 11 ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7))
92 orcom 870 . . . . . . . . . . 11 (((-𝑥 mod 8) = 1 ∨ (-𝑥 mod 8) = 7) ↔ ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1))
9391, 92bitri 278 . . . . . . . . . 10 ((-𝑥 mod 8) ∈ {1, 7} ↔ ((-𝑥 mod 8) = 7 ∨ (-𝑥 mod 8) = 1))
9487, 89, 933imtr4g 299 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}))
9545, 94vtoclga 3482 . . . . . . . 8 (-𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7}))
9639, 95syl 17 . . . . . . 7 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (--𝐵 mod 8) ∈ {1, 7}))
9718negnegd 11163 . . . . . . . . 9 (𝐵 ∈ ℤ → --𝐵 = 𝐵)
9897oveq1d 7217 . . . . . . . 8 (𝐵 ∈ ℤ → (--𝐵 mod 8) = (𝐵 mod 8))
9998eleq1d 2818 . . . . . . 7 (𝐵 ∈ ℤ → ((--𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
10096, 99sylibd 242 . . . . . 6 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} → (𝐵 mod 8) ∈ {1, 7}))
101 oveq1 7209 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥 mod 8) = (𝐵 mod 8))
102101eleq1d 2818 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
103 negeq 11053 . . . . . . . . . 10 (𝑥 = 𝐵 → -𝑥 = -𝐵)
104103oveq1d 7217 . . . . . . . . 9 (𝑥 = 𝐵 → (-𝑥 mod 8) = (-𝐵 mod 8))
105104eleq1d 2818 . . . . . . . 8 (𝑥 = 𝐵 → ((-𝑥 mod 8) ∈ {1, 7} ↔ (-𝐵 mod 8) ∈ {1, 7}))
106102, 105imbi12d 348 . . . . . . 7 (𝑥 = 𝐵 → (((𝑥 mod 8) ∈ {1, 7} → (-𝑥 mod 8) ∈ {1, 7}) ↔ ((𝐵 mod 8) ∈ {1, 7} → (-𝐵 mod 8) ∈ {1, 7})))
107106, 94vtoclga 3482 . . . . . 6 (𝐵 ∈ ℤ → ((𝐵 mod 8) ∈ {1, 7} → (-𝐵 mod 8) ∈ {1, 7}))
108100, 107impbid 215 . . . . 5 (𝐵 ∈ ℤ → ((-𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
109108ad2antlr 727 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → ((-𝐵 mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
11038, 109bitrd 282 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) = 7) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
11123, 110jaodan 958 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
1122, 111sylan2b 597 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  {cpr 4533  (class class class)co 7202  cc 10710  cr 10711  1c1 10713   · cmul 10717  -cneg 11046  3c3 11869  5c5 11871  7c7 11873  8c8 11874  cz 12159  +crp 12569   mod cmo 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fl 13350  df-mod 13426
This theorem is referenced by:  lgsdir2  26183
  Copyright terms: Public domain W3C validator