Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssico Structured version   Visualization version   GIF version

Theorem uzssico 31741
Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Assertion
Ref Expression
uzssico (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))

Proof of Theorem uzssico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12514 . . . . . 6 ℤ ⊆ ℝ
21sseli 3944 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
32a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ))
43anim1d 612 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀𝑥) → (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
5 eluz1 12775 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
6 zre 12511 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7 elicopnf 13371 . . . 4 (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
86, 7syl 17 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
94, 5, 83imtr4d 294 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ (𝑀[,)+∞)))
109ssrdv 3954 1 (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wss 3914   class class class wbr 5109  cfv 6500  (class class class)co 7361  cr 11058  +∞cpnf 11194  cle 11198  cz 12507  cuz 12771  [,)cico 13275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-pre-lttri 11133  ax-pre-lttrn 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-neg 11396  df-z 12508  df-uz 12772  df-ico 13279
This theorem is referenced by:  chtvalz  33306
  Copyright terms: Public domain W3C validator