Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssico Structured version   Visualization version   GIF version

Theorem uzssico 31866
Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Assertion
Ref Expression
uzssico (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))

Proof of Theorem uzssico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12547 . . . . . 6 ℤ ⊆ ℝ
21sseli 3974 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
32a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ))
43anim1d 611 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀𝑥) → (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
5 eluz1 12808 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
6 zre 12544 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7 elicopnf 13404 . . . 4 (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
86, 7syl 17 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
94, 5, 83imtr4d 293 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ (𝑀[,)+∞)))
109ssrdv 3984 1 (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wss 3944   class class class wbr 5141  cfv 6532  (class class class)co 7393  cr 11091  +∞cpnf 11227  cle 11231  cz 12540  cuz 12804  [,)cico 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-pre-lttri 11166  ax-pre-lttrn 11167
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-neg 11429  df-z 12541  df-uz 12805  df-ico 13312
This theorem is referenced by:  chtvalz  33472
  Copyright terms: Public domain W3C validator