| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssico | Structured version Visualization version GIF version | ||
| Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| uzssico | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssre 12552 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
| 2 | 1 | sseli 3950 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)) |
| 4 | 3 | anim1d 611 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
| 5 | eluz1 12813 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥))) | |
| 6 | zre 12549 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | elicopnf 13419 | . . . 4 ⊢ (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
| 9 | 4, 5, 8 | 3imtr4d 294 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ (𝑀[,)+∞))) |
| 10 | 9 | ssrdv 3960 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3922 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 +∞cpnf 11223 ≤ cle 11227 ℤcz 12545 ℤ≥cuz 12809 [,)cico 13321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-pre-lttri 11160 ax-pre-lttrn 11161 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-neg 11426 df-z 12546 df-uz 12810 df-ico 13325 |
| This theorem is referenced by: chtvalz 34628 |
| Copyright terms: Public domain | W3C validator |