Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssico | Structured version Visualization version GIF version |
Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
Ref | Expression |
---|---|
uzssico | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 12256 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
2 | 1 | sseli 3913 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)) |
4 | 3 | anim1d 610 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
5 | eluz1 12515 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥))) | |
6 | zre 12253 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | elicopnf 13106 | . . . 4 ⊢ (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
9 | 4, 5, 8 | 3imtr4d 293 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ (𝑀[,)+∞))) |
10 | 9 | ssrdv 3923 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 +∞cpnf 10937 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-ico 13014 |
This theorem is referenced by: chtvalz 32509 |
Copyright terms: Public domain | W3C validator |