Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssico Structured version   Visualization version   GIF version

Theorem uzssico 32570
Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Assertion
Ref Expression
uzssico (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))

Proof of Theorem uzssico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12601 . . . . . 6 ℤ ⊆ ℝ
21sseli 3976 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
32a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ))
43anim1d 609 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀𝑥) → (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
5 eluz1 12862 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
6 zre 12598 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7 elicopnf 13460 . . . 4 (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
86, 7syl 17 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
94, 5, 83imtr4d 293 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ (𝑀[,)+∞)))
109ssrdv 3986 1 (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wss 3947   class class class wbr 5150  cfv 6551  (class class class)co 7424  cr 11143  +∞cpnf 11281  cle 11285  cz 12594  cuz 12858  [,)cico 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-pre-lttri 11218  ax-pre-lttrn 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-neg 11483  df-z 12595  df-uz 12859  df-ico 13368
This theorem is referenced by:  chtvalz  34266
  Copyright terms: Public domain W3C validator