| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzssico | Structured version Visualization version GIF version | ||
| Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| Ref | Expression |
|---|---|
| uzssico | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssre 12475 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
| 2 | 1 | sseli 3925 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)) |
| 4 | 3 | anim1d 611 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
| 5 | eluz1 12736 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥))) | |
| 6 | zre 12472 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | elicopnf 13345 | . . . 4 ⊢ (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥))) |
| 9 | 4, 5, 8 | 3imtr4d 294 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ (𝑀[,)+∞))) |
| 10 | 9 | ssrdv 3935 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 +∞cpnf 11143 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-ico 13251 |
| This theorem is referenced by: chtvalz 34642 |
| Copyright terms: Public domain | W3C validator |