Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssico Structured version   Visualization version   GIF version

Theorem uzssico 32791
Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Assertion
Ref Expression
uzssico (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))

Proof of Theorem uzssico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zssre 12648 . . . . . 6 ℤ ⊆ ℝ
21sseli 4004 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
32a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → 𝑥 ∈ ℝ))
43anim1d 610 . . 3 (𝑀 ∈ ℤ → ((𝑥 ∈ ℤ ∧ 𝑀𝑥) → (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
5 eluz1 12909 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
6 zre 12645 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7 elicopnf 13507 . . . 4 (𝑀 ∈ ℝ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
86, 7syl 17 . . 3 (𝑀 ∈ ℤ → (𝑥 ∈ (𝑀[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑀𝑥)))
94, 5, 83imtr4d 294 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ (𝑀[,)+∞)))
109ssrdv 4014 1 (𝑀 ∈ ℤ → (ℤ𝑀) ⊆ (𝑀[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976   class class class wbr 5166  cfv 6575  (class class class)co 7450  cr 11185  +∞cpnf 11323  cle 11327  cz 12641  cuz 12905  [,)cico 13411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-pre-lttri 11260  ax-pre-lttrn 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-neg 11525  df-z 12642  df-uz 12906  df-ico 13415
This theorem is referenced by:  chtvalz  34608
  Copyright terms: Public domain W3C validator