Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∧ wa 397 ∈
wcel 2107 class class class wbr 5149
‘cfv 6544 ≤
cle 11249 ℤcz 12558
ℤ≥cuz 12822 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-neg 11447 df-z 12559
df-uz 12823 |
This theorem is referenced by: uzneg
12842 uztric
12846 uzwo3
12927 fzn
13517 fzsplit2
13526 fznn
13569 uzsplit
13573 elfz2nn0
13592 fzouzsplit
13667 faclbnd
14250 bcval5
14278 fz1isolem
14422 seqcoll
14425 rexuzre
15299 caurcvg
15623 caucvg
15625 summolem2a
15661 fsum0diaglem
15722 climcnds
15797 mertenslem1
15830 ntrivcvgmullem
15847 prodmolem2a
15878 ruclem10
16182 eulerthlem2
16715 pcpremul
16776 pcdvdsb
16802 pcadd
16822 pcfac
16832 pcbc
16833 prmunb
16847 prmreclem5
16853 vdwnnlem3
16930 lt6abl
19763 ovolunlem1a
25013 mbflimsup
25183 plyco0
25706 plyeq0lem
25724 aannenlem1
25841 aaliou3lem2
25856 aaliou3lem8
25858 chtublem
26714 bcmax
26781 bpos1lem
26785 bposlem1
26787 axlowdimlem16
28215 fzsplit3
32005 cycpmco2lem7
32291 ballotlem2
33487 ballotlemimin
33504 breprexplemc
33644 elfzm12
34660 poimirlem3
36491 poimirlem4
36492 poimirlem28
36516 mblfinlem2
36526 incsequz
36616 incsequz2
36617 aks4d1p1
40941 sticksstones12a
40973 sticksstones12
40974 nacsfix
41450 ellz1
41505 eluzrabdioph
41544 monotuz
41680 expdiophlem1
41760 nznngen
43075 fzisoeu
44010 fmul01
44296 climsuselem1
44323 climsuse
44324 iblspltprt
44689 itgspltprt
44695 wallispilem5
44785 stirlinglem8
44797 dirkertrigeqlem1
44814 fourierdlem12
44835 ssfz12
46022 |