| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12856 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 ≤ cle 11270 ℤcz 12588 ℤ≥cuz 12852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-neg 11469 df-z 12589 df-uz 12853 |
| This theorem is referenced by: uzneg 12872 uztric 12876 uzwo3 12959 fzn 13557 fzsplit2 13566 fznn 13609 uzsplit 13613 elfz2nn0 13635 fzouzsplit 13711 faclbnd 14308 bcval5 14336 fz1isolem 14479 seqcoll 14482 rexuzre 15371 caurcvg 15693 caucvg 15695 summolem2a 15731 fsum0diaglem 15792 climcnds 15867 mertenslem1 15900 ntrivcvgmullem 15917 prodmolem2a 15950 ruclem10 16257 eulerthlem2 16801 pcpremul 16863 pcdvdsb 16889 pcadd 16909 pcfac 16919 pcbc 16920 prmunb 16934 prmreclem5 16940 vdwnnlem3 17017 lt6abl 19876 ovolunlem1a 25449 mbflimsup 25619 plyco0 26149 plyeq0lem 26167 aannenlem1 26288 aaliou3lem2 26303 aaliou3lem8 26305 chtublem 27174 bcmax 27241 bpos1lem 27245 bposlem1 27247 axlowdimlem16 28936 fzsplit3 32770 cycpmco2lem7 33143 ballotlem2 34521 ballotlemimin 34538 breprexplemc 34664 elfzm12 35697 poimirlem3 37647 poimirlem4 37648 poimirlem28 37672 mblfinlem2 37682 incsequz 37772 incsequz2 37773 aks4d1p1 42089 primrootspoweq0 42119 aks6d1c2 42143 sticksstones12a 42170 sticksstones12 42171 aks6d1c6lem3 42185 nacsfix 42735 ellz1 42790 eluzrabdioph 42829 monotuz 42965 expdiophlem1 43045 nznngen 44340 fzisoeu 45329 fmul01 45609 climsuselem1 45636 climsuse 45637 iblspltprt 46002 itgspltprt 46008 wallispilem5 46098 stirlinglem8 46110 dirkertrigeqlem1 46127 fourierdlem12 46148 ssfz12 47343 |
| Copyright terms: Public domain | W3C validator |