![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12907 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: uzneg 12923 uztric 12927 uzwo3 13008 fzn 13600 fzsplit2 13609 fznn 13652 uzsplit 13656 elfz2nn0 13675 fzouzsplit 13751 faclbnd 14339 bcval5 14367 fz1isolem 14510 seqcoll 14513 rexuzre 15401 caurcvg 15725 caucvg 15727 summolem2a 15763 fsum0diaglem 15824 climcnds 15899 mertenslem1 15932 ntrivcvgmullem 15949 prodmolem2a 15982 ruclem10 16287 eulerthlem2 16829 pcpremul 16890 pcdvdsb 16916 pcadd 16936 pcfac 16946 pcbc 16947 prmunb 16961 prmreclem5 16967 vdwnnlem3 17044 lt6abl 19937 ovolunlem1a 25550 mbflimsup 25720 plyco0 26251 plyeq0lem 26269 aannenlem1 26388 aaliou3lem2 26403 aaliou3lem8 26405 chtublem 27273 bcmax 27340 bpos1lem 27344 bposlem1 27346 axlowdimlem16 28990 fzsplit3 32799 cycpmco2lem7 33125 ballotlem2 34453 ballotlemimin 34470 breprexplemc 34609 elfzm12 35643 poimirlem3 37583 poimirlem4 37584 poimirlem28 37608 mblfinlem2 37618 incsequz 37708 incsequz2 37709 aks4d1p1 42033 primrootspoweq0 42063 aks6d1c2 42087 sticksstones12a 42114 sticksstones12 42115 aks6d1c6lem3 42129 nacsfix 42668 ellz1 42723 eluzrabdioph 42762 monotuz 42898 expdiophlem1 42978 nznngen 44285 fzisoeu 45215 fmul01 45501 climsuselem1 45528 climsuse 45529 iblspltprt 45894 itgspltprt 45900 wallispilem5 45990 stirlinglem8 46002 dirkertrigeqlem1 46019 fourierdlem12 46040 ssfz12 47229 |
Copyright terms: Public domain | W3C validator |