| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12757 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-neg 11368 df-z 12490 df-uz 12754 |
| This theorem is referenced by: uzneg 12773 uztric 12777 uzwo3 12862 fzn 13461 fzsplit2 13470 fznn 13513 uzsplit 13517 elfz2nn0 13539 fzouzsplit 13615 faclbnd 14215 bcval5 14243 fz1isolem 14386 seqcoll 14389 rexuzre 15278 caurcvg 15602 caucvg 15604 summolem2a 15640 fsum0diaglem 15701 climcnds 15776 mertenslem1 15809 ntrivcvgmullem 15826 prodmolem2a 15859 ruclem10 16166 eulerthlem2 16711 pcpremul 16773 pcdvdsb 16799 pcadd 16819 pcfac 16829 pcbc 16830 prmunb 16844 prmreclem5 16850 vdwnnlem3 16927 lt6abl 19792 ovolunlem1a 25413 mbflimsup 25583 plyco0 26113 plyeq0lem 26131 aannenlem1 26252 aaliou3lem2 26267 aaliou3lem8 26269 chtublem 27138 bcmax 27205 bpos1lem 27209 bposlem1 27211 axlowdimlem16 28920 fzsplit3 32749 cycpmco2lem7 33087 ballotlem2 34459 ballotlemimin 34476 breprexplemc 34602 elfzm12 35650 poimirlem3 37605 poimirlem4 37606 poimirlem28 37630 mblfinlem2 37640 incsequz 37730 incsequz2 37731 aks4d1p1 42052 primrootspoweq0 42082 aks6d1c2 42106 sticksstones12a 42133 sticksstones12 42134 aks6d1c6lem3 42148 nacsfix 42688 ellz1 42743 eluzrabdioph 42782 monotuz 42917 expdiophlem1 42997 nznngen 44292 fzisoeu 45285 fmul01 45565 climsuselem1 45592 climsuse 45593 iblspltprt 45958 itgspltprt 45964 wallispilem5 46054 stirlinglem8 46066 dirkertrigeqlem1 46083 fourierdlem12 46104 ssfz12 47302 |
| Copyright terms: Public domain | W3C validator |