Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ↔ wb 205
∧ wa 396 ∈
wcel 2106 class class class wbr 5148
‘cfv 6543 ≤
cle 11248 ℤcz 12557
ℤ≥cuz 12821 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-neg 11446 df-z 12558
df-uz 12822 |
This theorem is referenced by: uzneg
12841 uztric
12845 uzwo3
12926 fzn
13516 fzsplit2
13525 fznn
13568 uzsplit
13572 elfz2nn0
13591 fzouzsplit
13666 faclbnd
14249 bcval5
14277 fz1isolem
14421 seqcoll
14424 rexuzre
15298 caurcvg
15622 caucvg
15624 summolem2a
15660 fsum0diaglem
15721 climcnds
15796 mertenslem1
15829 ntrivcvgmullem
15846 prodmolem2a
15877 ruclem10
16181 eulerthlem2
16714 pcpremul
16775 pcdvdsb
16801 pcadd
16821 pcfac
16831 pcbc
16832 prmunb
16846 prmreclem5
16852 vdwnnlem3
16929 lt6abl
19762 ovolunlem1a
25012 mbflimsup
25182 plyco0
25705 plyeq0lem
25723 aannenlem1
25840 aaliou3lem2
25855 aaliou3lem8
25857 chtublem
26711 bcmax
26778 bpos1lem
26782 bposlem1
26784 axlowdimlem16
28212 fzsplit3
32000 cycpmco2lem7
32286 ballotlem2
33482 ballotlemimin
33499 breprexplemc
33639 elfzm12
34655 poimirlem3
36486 poimirlem4
36487 poimirlem28
36511 mblfinlem2
36521 incsequz
36611 incsequz2
36612 aks4d1p1
40936 sticksstones12a
40968 sticksstones12
40969 nacsfix
41440 ellz1
41495 eluzrabdioph
41534 monotuz
41670 expdiophlem1
41750 nznngen
43065 fzisoeu
44000 fmul01
44286 climsuselem1
44313 climsuse
44314 iblspltprt
44679 itgspltprt
44685 wallispilem5
44775 stirlinglem8
44787 dirkertrigeqlem1
44804 fourierdlem12
44825 ssfz12
46012 |