| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12773 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzneg 12789 uztric 12793 uzwo3 12878 fzn 13477 fzsplit2 13486 fznn 13529 uzsplit 13533 elfz2nn0 13555 fzouzsplit 13631 faclbnd 14231 bcval5 14259 fz1isolem 14402 seqcoll 14405 rexuzre 15295 caurcvg 15619 caucvg 15621 summolem2a 15657 fsum0diaglem 15718 climcnds 15793 mertenslem1 15826 ntrivcvgmullem 15843 prodmolem2a 15876 ruclem10 16183 eulerthlem2 16728 pcpremul 16790 pcdvdsb 16816 pcadd 16836 pcfac 16846 pcbc 16847 prmunb 16861 prmreclem5 16867 vdwnnlem3 16944 lt6abl 19801 ovolunlem1a 25373 mbflimsup 25543 plyco0 26073 plyeq0lem 26091 aannenlem1 26212 aaliou3lem2 26227 aaliou3lem8 26229 chtublem 27098 bcmax 27165 bpos1lem 27169 bposlem1 27171 axlowdimlem16 28860 fzsplit3 32689 cycpmco2lem7 33062 ballotlem2 34453 ballotlemimin 34470 breprexplemc 34596 elfzm12 35635 poimirlem3 37590 poimirlem4 37591 poimirlem28 37615 mblfinlem2 37625 incsequz 37715 incsequz2 37716 aks4d1p1 42037 primrootspoweq0 42067 aks6d1c2 42091 sticksstones12a 42118 sticksstones12 42119 aks6d1c6lem3 42133 nacsfix 42673 ellz1 42728 eluzrabdioph 42767 monotuz 42903 expdiophlem1 42983 nznngen 44278 fzisoeu 45271 fmul01 45551 climsuselem1 45578 climsuse 45579 iblspltprt 45944 itgspltprt 45950 wallispilem5 46040 stirlinglem8 46052 dirkertrigeqlem1 46069 fourierdlem12 46090 ssfz12 47288 |
| Copyright terms: Public domain | W3C validator |