Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12568 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 ≤ cle 10994 ℤcz 12302 ℤ≥cuz 12564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-neg 11191 df-z 12303 df-uz 12565 |
This theorem is referenced by: uzneg 12584 uztric 12588 uzwo3 12665 fzn 13254 fzsplit2 13263 fznn 13306 uzsplit 13310 elfz2nn0 13329 fzouzsplit 13403 faclbnd 13985 bcval5 14013 fz1isolem 14156 seqcoll 14159 rexuzre 15045 caurcvg 15369 caucvg 15371 summolem2a 15408 fsum0diaglem 15469 climcnds 15544 mertenslem1 15577 ntrivcvgmullem 15594 prodmolem2a 15625 ruclem10 15929 eulerthlem2 16464 pcpremul 16525 pcdvdsb 16551 pcadd 16571 pcfac 16581 pcbc 16582 prmunb 16596 prmreclem5 16602 vdwnnlem3 16679 lt6abl 19477 ovolunlem1a 24641 mbflimsup 24811 plyco0 25334 plyeq0lem 25352 aannenlem1 25469 aaliou3lem2 25484 aaliou3lem8 25486 chtublem 26340 bcmax 26407 bpos1lem 26411 bposlem1 26413 axlowdimlem16 27306 fzsplit3 31094 cycpmco2lem7 31378 ballotlem2 32434 ballotlemimin 32451 breprexplemc 32591 elfzm12 33612 poimirlem3 35759 poimirlem4 35760 poimirlem28 35784 mblfinlem2 35794 incsequz 35885 incsequz2 35886 aks4d1p1 40064 sticksstones12a 40093 sticksstones12 40094 nacsfix 40514 ellz1 40569 eluzrabdioph 40608 monotuz 40743 expdiophlem1 40823 nznngen 41887 fzisoeu 42793 fmul01 43075 climsuselem1 43102 climsuse 43103 iblspltprt 43468 itgspltprt 43474 wallispilem5 43564 stirlinglem8 43576 dirkertrigeqlem1 43593 fourierdlem12 43614 ssfz12 44758 |
Copyright terms: Public domain | W3C validator |