| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12736 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzneg 12752 uztric 12756 uzwo3 12841 fzn 13440 fzsplit2 13449 fznn 13492 uzsplit 13496 elfz2nn0 13518 fzouzsplit 13594 faclbnd 14197 bcval5 14225 fz1isolem 14368 seqcoll 14371 rexuzre 15260 caurcvg 15584 caucvg 15586 summolem2a 15622 fsum0diaglem 15683 climcnds 15758 mertenslem1 15791 ntrivcvgmullem 15808 prodmolem2a 15841 ruclem10 16148 eulerthlem2 16693 pcpremul 16755 pcdvdsb 16781 pcadd 16801 pcfac 16811 pcbc 16812 prmunb 16826 prmreclem5 16832 vdwnnlem3 16909 lt6abl 19808 ovolunlem1a 25425 mbflimsup 25595 plyco0 26125 plyeq0lem 26143 aannenlem1 26264 aaliou3lem2 26279 aaliou3lem8 26281 chtublem 27150 bcmax 27217 bpos1lem 27221 bposlem1 27223 axlowdimlem16 28936 fzsplit3 32774 cycpmco2lem7 33099 ballotlem2 34500 ballotlemimin 34517 breprexplemc 34643 elfzm12 35717 poimirlem3 37669 poimirlem4 37670 poimirlem28 37694 mblfinlem2 37704 incsequz 37794 incsequz2 37795 aks4d1p1 42115 primrootspoweq0 42145 aks6d1c2 42169 sticksstones12a 42196 sticksstones12 42197 aks6d1c6lem3 42211 nacsfix 42751 ellz1 42806 eluzrabdioph 42845 monotuz 42980 expdiophlem1 43060 nznngen 44355 fzisoeu 45347 fmul01 45626 climsuselem1 45653 climsuse 45654 iblspltprt 46017 itgspltprt 46023 wallispilem5 46113 stirlinglem8 46125 dirkertrigeqlem1 46142 fourierdlem12 46163 ssfz12 47351 |
| Copyright terms: Public domain | W3C validator |