Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12636 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 541 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 ≤ cle 11060 ℤcz 12369 ℤ≥cuz 12632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-cnex 10977 ax-resscn 10978 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-neg 11258 df-z 12370 df-uz 12633 |
This theorem is referenced by: uzneg 12652 uztric 12656 uzwo3 12733 fzn 13322 fzsplit2 13331 fznn 13374 uzsplit 13378 elfz2nn0 13397 fzouzsplit 13472 faclbnd 14054 bcval5 14082 fz1isolem 14224 seqcoll 14227 rexuzre 15113 caurcvg 15437 caucvg 15439 summolem2a 15476 fsum0diaglem 15537 climcnds 15612 mertenslem1 15645 ntrivcvgmullem 15662 prodmolem2a 15693 ruclem10 15997 eulerthlem2 16532 pcpremul 16593 pcdvdsb 16619 pcadd 16639 pcfac 16649 pcbc 16650 prmunb 16664 prmreclem5 16670 vdwnnlem3 16747 lt6abl 19545 ovolunlem1a 24709 mbflimsup 24879 plyco0 25402 plyeq0lem 25420 aannenlem1 25537 aaliou3lem2 25552 aaliou3lem8 25554 chtublem 26408 bcmax 26475 bpos1lem 26479 bposlem1 26481 axlowdimlem16 27374 fzsplit3 31164 cycpmco2lem7 31448 ballotlem2 32504 ballotlemimin 32521 breprexplemc 32661 elfzm12 33682 poimirlem3 35828 poimirlem4 35829 poimirlem28 35853 mblfinlem2 35863 incsequz 35954 incsequz2 35955 aks4d1p1 40284 sticksstones12a 40313 sticksstones12 40314 nacsfix 40729 ellz1 40784 eluzrabdioph 40823 monotuz 40959 expdiophlem1 41039 nznngen 42147 fzisoeu 43067 fmul01 43350 climsuselem1 43377 climsuse 43378 iblspltprt 43743 itgspltprt 43749 wallispilem5 43839 stirlinglem8 43851 dirkertrigeqlem1 43868 fourierdlem12 43889 ssfz12 45050 |
Copyright terms: Public domain | W3C validator |