Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12691 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 541 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5096 ‘cfv 6483 ≤ cle 11115 ℤcz 12424 ℤ≥cuz 12687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-cnex 11032 ax-resscn 11033 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-neg 11313 df-z 12425 df-uz 12688 |
This theorem is referenced by: uzneg 12707 uztric 12711 uzwo3 12788 fzn 13377 fzsplit2 13386 fznn 13429 uzsplit 13433 elfz2nn0 13452 fzouzsplit 13527 faclbnd 14109 bcval5 14137 fz1isolem 14279 seqcoll 14282 rexuzre 15163 caurcvg 15487 caucvg 15489 summolem2a 15526 fsum0diaglem 15587 climcnds 15662 mertenslem1 15695 ntrivcvgmullem 15712 prodmolem2a 15743 ruclem10 16047 eulerthlem2 16580 pcpremul 16641 pcdvdsb 16667 pcadd 16687 pcfac 16697 pcbc 16698 prmunb 16712 prmreclem5 16718 vdwnnlem3 16795 lt6abl 19590 ovolunlem1a 24765 mbflimsup 24935 plyco0 25458 plyeq0lem 25476 aannenlem1 25593 aaliou3lem2 25608 aaliou3lem8 25610 chtublem 26464 bcmax 26531 bpos1lem 26535 bposlem1 26537 axlowdimlem16 27613 fzsplit3 31400 cycpmco2lem7 31684 ballotlem2 32753 ballotlemimin 32770 breprexplemc 32910 elfzm12 33930 poimirlem3 35936 poimirlem4 35937 poimirlem28 35961 mblfinlem2 35971 incsequz 36062 incsequz2 36063 aks4d1p1 40389 sticksstones12a 40421 sticksstones12 40422 nacsfix 40847 ellz1 40902 eluzrabdioph 40941 monotuz 41077 expdiophlem1 41157 nznngen 42307 fzisoeu 43226 fmul01 43509 climsuselem1 43536 climsuse 43537 iblspltprt 43902 itgspltprt 43908 wallispilem5 43998 stirlinglem8 44010 dirkertrigeqlem1 44027 fourierdlem12 44048 ssfz12 45224 |
Copyright terms: Public domain | W3C validator |