| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12804 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: uzneg 12820 uztric 12824 uzwo3 12909 fzn 13508 fzsplit2 13517 fznn 13560 uzsplit 13564 elfz2nn0 13586 fzouzsplit 13662 faclbnd 14262 bcval5 14290 fz1isolem 14433 seqcoll 14436 rexuzre 15326 caurcvg 15650 caucvg 15652 summolem2a 15688 fsum0diaglem 15749 climcnds 15824 mertenslem1 15857 ntrivcvgmullem 15874 prodmolem2a 15907 ruclem10 16214 eulerthlem2 16759 pcpremul 16821 pcdvdsb 16847 pcadd 16867 pcfac 16877 pcbc 16878 prmunb 16892 prmreclem5 16898 vdwnnlem3 16975 lt6abl 19832 ovolunlem1a 25404 mbflimsup 25574 plyco0 26104 plyeq0lem 26122 aannenlem1 26243 aaliou3lem2 26258 aaliou3lem8 26260 chtublem 27129 bcmax 27196 bpos1lem 27200 bposlem1 27202 axlowdimlem16 28891 fzsplit3 32723 cycpmco2lem7 33096 ballotlem2 34487 ballotlemimin 34504 breprexplemc 34630 elfzm12 35669 poimirlem3 37624 poimirlem4 37625 poimirlem28 37649 mblfinlem2 37659 incsequz 37749 incsequz2 37750 aks4d1p1 42071 primrootspoweq0 42101 aks6d1c2 42125 sticksstones12a 42152 sticksstones12 42153 aks6d1c6lem3 42167 nacsfix 42707 ellz1 42762 eluzrabdioph 42801 monotuz 42937 expdiophlem1 43017 nznngen 44312 fzisoeu 45305 fmul01 45585 climsuselem1 45612 climsuse 45613 iblspltprt 45978 itgspltprt 45984 wallispilem5 46074 stirlinglem8 46086 dirkertrigeqlem1 46103 fourierdlem12 46124 ssfz12 47319 |
| Copyright terms: Public domain | W3C validator |