| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12797 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: uzneg 12813 uztric 12817 uzwo3 12902 fzn 13501 fzsplit2 13510 fznn 13553 uzsplit 13557 elfz2nn0 13579 fzouzsplit 13655 faclbnd 14255 bcval5 14283 fz1isolem 14426 seqcoll 14429 rexuzre 15319 caurcvg 15643 caucvg 15645 summolem2a 15681 fsum0diaglem 15742 climcnds 15817 mertenslem1 15850 ntrivcvgmullem 15867 prodmolem2a 15900 ruclem10 16207 eulerthlem2 16752 pcpremul 16814 pcdvdsb 16840 pcadd 16860 pcfac 16870 pcbc 16871 prmunb 16885 prmreclem5 16891 vdwnnlem3 16968 lt6abl 19825 ovolunlem1a 25397 mbflimsup 25567 plyco0 26097 plyeq0lem 26115 aannenlem1 26236 aaliou3lem2 26251 aaliou3lem8 26253 chtublem 27122 bcmax 27189 bpos1lem 27193 bposlem1 27195 axlowdimlem16 28884 fzsplit3 32716 cycpmco2lem7 33089 ballotlem2 34480 ballotlemimin 34497 breprexplemc 34623 elfzm12 35662 poimirlem3 37617 poimirlem4 37618 poimirlem28 37642 mblfinlem2 37652 incsequz 37742 incsequz2 37743 aks4d1p1 42064 primrootspoweq0 42094 aks6d1c2 42118 sticksstones12a 42145 sticksstones12 42146 aks6d1c6lem3 42160 nacsfix 42700 ellz1 42755 eluzrabdioph 42794 monotuz 42930 expdiophlem1 43010 nznngen 44305 fzisoeu 45298 fmul01 45578 climsuselem1 45605 climsuse 45606 iblspltprt 45971 itgspltprt 45977 wallispilem5 46067 stirlinglem8 46079 dirkertrigeqlem1 46096 fourierdlem12 46117 ssfz12 47315 |
| Copyright terms: Public domain | W3C validator |