![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12880 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 df-uz 12877 |
This theorem is referenced by: uzneg 12896 uztric 12900 uzwo3 12983 fzn 13577 fzsplit2 13586 fznn 13629 uzsplit 13633 elfz2nn0 13655 fzouzsplit 13731 faclbnd 14326 bcval5 14354 fz1isolem 14497 seqcoll 14500 rexuzre 15388 caurcvg 15710 caucvg 15712 summolem2a 15748 fsum0diaglem 15809 climcnds 15884 mertenslem1 15917 ntrivcvgmullem 15934 prodmolem2a 15967 ruclem10 16272 eulerthlem2 16816 pcpremul 16877 pcdvdsb 16903 pcadd 16923 pcfac 16933 pcbc 16934 prmunb 16948 prmreclem5 16954 vdwnnlem3 17031 lt6abl 19928 ovolunlem1a 25545 mbflimsup 25715 plyco0 26246 plyeq0lem 26264 aannenlem1 26385 aaliou3lem2 26400 aaliou3lem8 26402 chtublem 27270 bcmax 27337 bpos1lem 27341 bposlem1 27343 axlowdimlem16 28987 fzsplit3 32802 cycpmco2lem7 33135 ballotlem2 34470 ballotlemimin 34487 breprexplemc 34626 elfzm12 35660 poimirlem3 37610 poimirlem4 37611 poimirlem28 37635 mblfinlem2 37645 incsequz 37735 incsequz2 37736 aks4d1p1 42058 primrootspoweq0 42088 aks6d1c2 42112 sticksstones12a 42139 sticksstones12 42140 aks6d1c6lem3 42154 nacsfix 42700 ellz1 42755 eluzrabdioph 42794 monotuz 42930 expdiophlem1 43010 nznngen 44312 fzisoeu 45251 fmul01 45536 climsuselem1 45563 climsuse 45564 iblspltprt 45929 itgspltprt 45935 wallispilem5 46025 stirlinglem8 46037 dirkertrigeqlem1 46054 fourierdlem12 46075 ssfz12 47264 |
Copyright terms: Public domain | W3C validator |