| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 12746 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 2 | 1 | baibd 539 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 ≤ cle 11158 ℤcz 12479 ℤ≥cuz 12742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-cnex 11073 ax-resscn 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-neg 11358 df-z 12480 df-uz 12743 |
| This theorem is referenced by: uzneg 12762 uztric 12766 uzwo3 12847 fzn 13447 fzsplit2 13456 fznn 13499 uzsplit 13503 elfz2nn0 13525 fzouzsplit 13601 faclbnd 14204 bcval5 14232 fz1isolem 14375 seqcoll 14378 rexuzre 15267 caurcvg 15591 caucvg 15593 summolem2a 15629 fsum0diaglem 15690 climcnds 15765 mertenslem1 15798 ntrivcvgmullem 15815 prodmolem2a 15848 ruclem10 16155 eulerthlem2 16700 pcpremul 16762 pcdvdsb 16788 pcadd 16808 pcfac 16818 pcbc 16819 prmunb 16833 prmreclem5 16839 vdwnnlem3 16916 lt6abl 19815 ovolunlem1a 25444 mbflimsup 25614 plyco0 26144 plyeq0lem 26162 aannenlem1 26283 aaliou3lem2 26298 aaliou3lem8 26300 chtublem 27169 bcmax 27236 bpos1lem 27240 bposlem1 27242 axlowdimlem16 28956 fzsplit3 32801 cycpmco2lem7 33142 ballotlem2 34574 ballotlemimin 34591 breprexplemc 34717 elfzm12 35791 poimirlem3 37736 poimirlem4 37737 poimirlem28 37761 mblfinlem2 37771 incsequz 37861 incsequz2 37862 aks4d1p1 42242 primrootspoweq0 42272 aks6d1c2 42296 sticksstones12a 42323 sticksstones12 42324 aks6d1c6lem3 42338 nacsfix 42869 ellz1 42924 eluzrabdioph 42963 monotuz 43098 expdiophlem1 43178 nznngen 44473 fzisoeu 45464 fmul01 45742 climsuselem1 45769 climsuse 45770 iblspltprt 46133 itgspltprt 46139 wallispilem5 46229 stirlinglem8 46241 dirkertrigeqlem1 46258 fourierdlem12 46279 ssfz12 47476 |
| Copyright terms: Public domain | W3C validator |