![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6943 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 12878 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6747 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | eleqtrdi 2848 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 𝒫 cpw 4604 dom cdm 5688 ‘cfv 6562 ℤcz 12610 ℤ≥cuz 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-neg 11492 df-z 12611 df-uz 12876 |
This theorem is referenced by: eluz2 12881 uztrn 12893 uzneg 12895 uzss 12898 uz11 12900 eluzadd 12904 eluzaddOLD 12910 subeluzsub 12912 uzm1 12913 uzin 12915 uzind4 12945 uzsupss 12979 elfz5 13552 elfzel1 13559 eluzfz1 13567 fzsplit2 13585 fzopth 13597 ssfzunsn 13606 fzpred 13608 fzpreddisj 13609 uzsplit 13632 uzdisj 13633 fzdif1 13641 fzm1 13643 uznfz 13646 nn0disj 13680 preduz 13686 fzolb 13701 fzoss2 13723 fzouzdisj 13731 fzoun 13732 ige2m2fzo 13763 fzen2 14006 seqp1 14053 seqcl 14059 seqfeq2 14062 seqfveq 14063 seqshft2 14065 seqsplit 14072 seqcaopr3 14074 seqf1olem2a 14077 seqf1olem1 14078 seqf1olem2 14079 seqid 14084 seqhomo 14086 seqz 14087 leexp2a 14208 hashfz 14462 fzsdom2 14463 hashfzo 14464 hashfzp1 14466 seqcoll 14499 rexanuz2 15384 cau4 15391 clim2ser 15687 clim2ser2 15688 climserle 15695 caurcvg 15709 caucvg 15711 fsumcvg 15744 fsumcvg2 15759 fsumsers 15760 fsumm1 15783 fsum1p 15785 fsumrev2 15814 telfsumo 15834 fsumparts 15838 cvgcmp 15848 cvgcmpub 15849 cvgcmpce 15850 isumsplit 15872 clim2prod 15920 clim2div 15921 prodfrec 15927 ntrivcvgtail 15932 fprodcvg 15962 fprodser 15981 fprodm1 15999 fprodeq0 16007 pcaddlem 16921 vdwnnlem2 17029 prmlem0 17139 gsumval2a 18710 telgsumfzs 20021 dvfsumle 26074 dvfsumleOLD 26075 dvfsumge 26076 dvfsumabs 26077 coeid3 26293 ulmres 26445 ulmss 26454 chtdif 27215 ppidif 27220 bcmono 27335 axlowdimlem6 28976 inffz 35709 mettrifi 37743 jm2.25 42987 jm2.16nn0 42992 dvgrat 44307 ssinc 45026 ssdec 45027 fzdifsuc2 45260 iuneqfzuzlem 45283 ssuzfz 45298 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 carageniuncllem1 46476 caratheodorylem1 46481 |
Copyright terms: Public domain | W3C validator |