Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 12514 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6596 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | eleqtrdi 2849 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: eluz2 12517 uztrn 12529 uzneg 12531 uzss 12534 uz11 12536 eluzadd 12542 subeluzsub 12544 uzm1 12545 uzin 12547 uzind4 12575 uzsupss 12609 elfz5 13177 elfzel1 13184 eluzfz1 13192 fzsplit2 13210 fzopth 13222 ssfzunsn 13231 fzpred 13233 fzpreddisj 13234 uzsplit 13257 uzdisj 13258 fzm1 13265 uznfz 13268 nn0disj 13301 preduz 13307 fzolb 13322 fzoss2 13343 fzouzdisj 13351 fzoun 13352 ige2m2fzo 13378 fzen2 13617 seqp1 13664 seqcl 13671 seqfeq2 13674 seqfveq 13675 seqshft2 13677 seqsplit 13684 seqcaopr3 13686 seqf1olem2a 13689 seqf1olem1 13690 seqf1olem2 13691 seqid 13696 seqhomo 13698 seqz 13699 leexp2a 13818 hashfz 14070 fzsdom2 14071 hashfzo 14072 hashfzp1 14074 seqcoll 14106 rexanuz2 14989 cau4 14996 clim2ser 15294 clim2ser2 15295 climserle 15302 caurcvg 15316 caucvg 15318 fsumcvg 15352 fsumcvg2 15367 fsumsers 15368 fsumm1 15391 fsum1p 15393 fsumrev2 15422 telfsumo 15442 fsumparts 15446 cvgcmp 15456 cvgcmpub 15457 cvgcmpce 15458 isumsplit 15480 clim2prod 15528 clim2div 15529 prodfrec 15535 ntrivcvgtail 15540 fprodcvg 15568 fprodser 15587 fprodm1 15605 fprodeq0 15613 pcaddlem 16517 vdwnnlem2 16625 prmlem0 16735 gsumval2a 18284 telgsumfzs 19505 dvfsumle 25090 dvfsumge 25091 dvfsumabs 25092 coeid3 25306 ulmres 25452 ulmss 25461 chtdif 26212 ppidif 26217 bcmono 26330 axlowdimlem6 27218 inffz 33601 mettrifi 35842 jm2.25 40737 jm2.16nn0 40742 dvgrat 41819 ssinc 42526 ssdec 42527 fzdifsuc2 42739 iuneqfzuzlem 42763 ssuzfz 42778 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 carageniuncllem1 43949 caratheodorylem1 43954 |
Copyright terms: Public domain | W3C validator |