| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6877 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12772 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6681 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2838 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4559 dom cdm 5631 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: eluz2 12775 uztrn 12787 uzneg 12789 uzss 12792 uz11 12794 eluzadd 12798 eluzaddOLD 12804 subeluzsub 12806 uzm1 12807 uzin 12809 uzind4 12841 uzsupss 12875 elfz5 13453 elfzel1 13460 eluzfz1 13468 fzsplit2 13486 fzopth 13498 ssfzunsn 13507 fzpred 13509 fzpreddisj 13510 uzsplit 13533 uzdisj 13534 fzdif1 13542 fzm1 13544 uznfz 13547 nn0disj 13581 preduz 13587 fzolb 13602 fzoss2 13624 fzouzdisj 13632 fzoun 13633 ige2m2fzo 13665 fzen2 13910 seqp1 13957 seqcl 13963 seqfeq2 13966 seqfveq 13967 seqshft2 13969 seqsplit 13976 seqcaopr3 13978 seqf1olem2a 13981 seqf1olem1 13982 seqf1olem2 13983 seqid 13988 seqhomo 13990 seqz 13991 leexp2a 14113 hashfz 14368 fzsdom2 14369 hashfzo 14370 hashfzp1 14372 seqcoll 14405 rexanuz2 15292 cau4 15299 clim2ser 15597 clim2ser2 15598 climserle 15605 caurcvg 15619 caucvg 15621 fsumcvg 15654 fsumcvg2 15669 fsumsers 15670 fsumm1 15693 fsum1p 15695 fsumrev2 15724 telfsumo 15744 fsumparts 15748 cvgcmp 15758 cvgcmpub 15759 cvgcmpce 15760 isumsplit 15782 clim2prod 15830 clim2div 15831 prodfrec 15837 ntrivcvgtail 15842 fprodcvg 15872 fprodser 15891 fprodm1 15909 fprodeq0 15917 pcaddlem 16835 vdwnnlem2 16943 prmlem0 17052 gsumval2a 18594 telgsumfzs 19903 dvfsumle 25959 dvfsumleOLD 25960 dvfsumge 25961 dvfsumabs 25962 coeid3 26178 ulmres 26330 ulmss 26339 chtdif 27101 ppidif 27106 bcmono 27221 axlowdimlem6 28927 inffz 35710 mettrifi 37744 jm2.25 42981 jm2.16nn0 42986 dvgrat 44294 ssinc 45074 ssdec 45075 fzdifsuc2 45301 iuneqfzuzlem 45323 ssuzfz 45338 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 carageniuncllem1 46512 caratheodorylem1 46517 |
| Copyright terms: Public domain | W3C validator |