| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6898 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12803 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6702 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2839 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4566 dom cdm 5641 ‘cfv 6514 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: eluz2 12806 uztrn 12818 uzneg 12820 uzss 12823 uz11 12825 eluzadd 12829 eluzaddOLD 12835 subeluzsub 12837 uzm1 12838 uzin 12840 uzind4 12872 uzsupss 12906 elfz5 13484 elfzel1 13491 eluzfz1 13499 fzsplit2 13517 fzopth 13529 ssfzunsn 13538 fzpred 13540 fzpreddisj 13541 uzsplit 13564 uzdisj 13565 fzdif1 13573 fzm1 13575 uznfz 13578 nn0disj 13612 preduz 13618 fzolb 13633 fzoss2 13655 fzouzdisj 13663 fzoun 13664 ige2m2fzo 13696 fzen2 13941 seqp1 13988 seqcl 13994 seqfeq2 13997 seqfveq 13998 seqshft2 14000 seqsplit 14007 seqcaopr3 14009 seqf1olem2a 14012 seqf1olem1 14013 seqf1olem2 14014 seqid 14019 seqhomo 14021 seqz 14022 leexp2a 14144 hashfz 14399 fzsdom2 14400 hashfzo 14401 hashfzp1 14403 seqcoll 14436 rexanuz2 15323 cau4 15330 clim2ser 15628 clim2ser2 15629 climserle 15636 caurcvg 15650 caucvg 15652 fsumcvg 15685 fsumcvg2 15700 fsumsers 15701 fsumm1 15724 fsum1p 15726 fsumrev2 15755 telfsumo 15775 fsumparts 15779 cvgcmp 15789 cvgcmpub 15790 cvgcmpce 15791 isumsplit 15813 clim2prod 15861 clim2div 15862 prodfrec 15868 ntrivcvgtail 15873 fprodcvg 15903 fprodser 15922 fprodm1 15940 fprodeq0 15948 pcaddlem 16866 vdwnnlem2 16974 prmlem0 17083 gsumval2a 18619 telgsumfzs 19926 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 coeid3 26152 ulmres 26304 ulmss 26313 chtdif 27075 ppidif 27080 bcmono 27195 axlowdimlem6 28881 inffz 35724 mettrifi 37758 jm2.25 42995 jm2.16nn0 43000 dvgrat 44308 ssinc 45088 ssdec 45089 fzdifsuc2 45315 iuneqfzuzlem 45337 ssuzfz 45352 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 carageniuncllem1 46526 caratheodorylem1 46531 |
| Copyright terms: Public domain | W3C validator |