![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | β’ (π β (β€β₯βπ) β π β β€) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6927 | . 2 β’ (π β (β€β₯βπ) β π β dom β€β₯) | |
2 | uzf 12829 | . . 3 β’ β€β₯:β€βΆπ« β€ | |
3 | 2 | fdmi 6728 | . 2 β’ dom β€β₯ = β€ |
4 | 1, 3 | eleqtrdi 2841 | 1 β’ (π β (β€β₯βπ) β π β β€) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 π« cpw 4601 dom cdm 5675 βcfv 6542 β€cz 12562 β€β₯cuz 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-neg 11451 df-z 12563 df-uz 12827 |
This theorem is referenced by: eluz2 12832 uztrn 12844 uzneg 12846 uzss 12849 uz11 12851 eluzadd 12855 eluzaddOLD 12861 subeluzsub 12863 uzm1 12864 uzin 12866 uzind4 12894 uzsupss 12928 elfz5 13497 elfzel1 13504 eluzfz1 13512 fzsplit2 13530 fzopth 13542 ssfzunsn 13551 fzpred 13553 fzpreddisj 13554 uzsplit 13577 uzdisj 13578 fzm1 13585 uznfz 13588 nn0disj 13621 preduz 13627 fzolb 13642 fzoss2 13664 fzouzdisj 13672 fzoun 13673 ige2m2fzo 13699 fzen2 13938 seqp1 13985 seqcl 13992 seqfeq2 13995 seqfveq 13996 seqshft2 13998 seqsplit 14005 seqcaopr3 14007 seqf1olem2a 14010 seqf1olem1 14011 seqf1olem2 14012 seqid 14017 seqhomo 14019 seqz 14020 leexp2a 14141 hashfz 14391 fzsdom2 14392 hashfzo 14393 hashfzp1 14395 seqcoll 14429 rexanuz2 15300 cau4 15307 clim2ser 15605 clim2ser2 15606 climserle 15613 caurcvg 15627 caucvg 15629 fsumcvg 15662 fsumcvg2 15677 fsumsers 15678 fsumm1 15701 fsum1p 15703 fsumrev2 15732 telfsumo 15752 fsumparts 15756 cvgcmp 15766 cvgcmpub 15767 cvgcmpce 15768 isumsplit 15790 clim2prod 15838 clim2div 15839 prodfrec 15845 ntrivcvgtail 15850 fprodcvg 15878 fprodser 15897 fprodm1 15915 fprodeq0 15923 pcaddlem 16825 vdwnnlem2 16933 prmlem0 17043 gsumval2a 18610 telgsumfzs 19898 dvfsumle 25773 dvfsumge 25774 dvfsumabs 25775 coeid3 25989 ulmres 26136 ulmss 26145 chtdif 26898 ppidif 26903 bcmono 27016 axlowdimlem6 28472 inffz 35003 gg-dvfsumle 35468 mettrifi 36928 jm2.25 42040 jm2.16nn0 42045 dvgrat 43373 ssinc 44077 ssdec 44078 fzdifsuc2 44318 iuneqfzuzlem 44342 ssuzfz 44357 ioodvbdlimc1lem2 44946 ioodvbdlimc2lem 44948 carageniuncllem1 45535 caratheodorylem1 45540 |
Copyright terms: Public domain | W3C validator |