| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6857 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12738 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6663 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2838 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4551 dom cdm 5619 ‘cfv 6482 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: eluz2 12741 uztrn 12753 uzneg 12755 uzss 12758 uz11 12760 eluzadd 12764 eluzaddOLD 12770 subeluzsub 12772 uzm1 12773 uzin 12775 uzind4 12807 uzsupss 12841 elfz5 13419 elfzel1 13426 eluzfz1 13434 fzsplit2 13452 fzopth 13464 ssfzunsn 13473 fzpred 13475 fzpreddisj 13476 uzsplit 13499 uzdisj 13500 fzdif1 13508 fzm1 13510 uznfz 13513 nn0disj 13547 preduz 13553 fzolb 13568 fzoss2 13590 fzouzdisj 13598 fzoun 13599 ige2m2fzo 13631 fzen2 13876 seqp1 13923 seqcl 13929 seqfeq2 13932 seqfveq 13933 seqshft2 13935 seqsplit 13942 seqcaopr3 13944 seqf1olem2a 13947 seqf1olem1 13948 seqf1olem2 13949 seqid 13954 seqhomo 13956 seqz 13957 leexp2a 14079 hashfz 14334 fzsdom2 14335 hashfzo 14336 hashfzp1 14338 seqcoll 14371 rexanuz2 15257 cau4 15264 clim2ser 15562 clim2ser2 15563 climserle 15570 caurcvg 15584 caucvg 15586 fsumcvg 15619 fsumcvg2 15634 fsumsers 15635 fsumm1 15658 fsum1p 15660 fsumrev2 15689 telfsumo 15709 fsumparts 15713 cvgcmp 15723 cvgcmpub 15724 cvgcmpce 15725 isumsplit 15747 clim2prod 15795 clim2div 15796 prodfrec 15802 ntrivcvgtail 15807 fprodcvg 15837 fprodser 15856 fprodm1 15874 fprodeq0 15882 pcaddlem 16800 vdwnnlem2 16908 prmlem0 17017 gsumval2a 18559 telgsumfzs 19868 dvfsumle 25924 dvfsumleOLD 25925 dvfsumge 25926 dvfsumabs 25927 coeid3 26143 ulmres 26295 ulmss 26304 chtdif 27066 ppidif 27071 bcmono 27186 axlowdimlem6 28892 inffz 35713 mettrifi 37747 jm2.25 42982 jm2.16nn0 42987 dvgrat 44295 ssinc 45075 ssdec 45076 fzdifsuc2 45302 iuneqfzuzlem 45324 ssuzfz 45339 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 carageniuncllem1 46512 caratheodorylem1 46517 |
| Copyright terms: Public domain | W3C validator |