| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12796 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6699 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2838 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4563 dom cdm 5638 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: eluz2 12799 uztrn 12811 uzneg 12813 uzss 12816 uz11 12818 eluzadd 12822 eluzaddOLD 12828 subeluzsub 12830 uzm1 12831 uzin 12833 uzind4 12865 uzsupss 12899 elfz5 13477 elfzel1 13484 eluzfz1 13492 fzsplit2 13510 fzopth 13522 ssfzunsn 13531 fzpred 13533 fzpreddisj 13534 uzsplit 13557 uzdisj 13558 fzdif1 13566 fzm1 13568 uznfz 13571 nn0disj 13605 preduz 13611 fzolb 13626 fzoss2 13648 fzouzdisj 13656 fzoun 13657 ige2m2fzo 13689 fzen2 13934 seqp1 13981 seqcl 13987 seqfeq2 13990 seqfveq 13991 seqshft2 13993 seqsplit 14000 seqcaopr3 14002 seqf1olem2a 14005 seqf1olem1 14006 seqf1olem2 14007 seqid 14012 seqhomo 14014 seqz 14015 leexp2a 14137 hashfz 14392 fzsdom2 14393 hashfzo 14394 hashfzp1 14396 seqcoll 14429 rexanuz2 15316 cau4 15323 clim2ser 15621 clim2ser2 15622 climserle 15629 caurcvg 15643 caucvg 15645 fsumcvg 15678 fsumcvg2 15693 fsumsers 15694 fsumm1 15717 fsum1p 15719 fsumrev2 15748 telfsumo 15768 fsumparts 15772 cvgcmp 15782 cvgcmpub 15783 cvgcmpce 15784 isumsplit 15806 clim2prod 15854 clim2div 15855 prodfrec 15861 ntrivcvgtail 15866 fprodcvg 15896 fprodser 15915 fprodm1 15933 fprodeq0 15941 pcaddlem 16859 vdwnnlem2 16967 prmlem0 17076 gsumval2a 18612 telgsumfzs 19919 dvfsumle 25926 dvfsumleOLD 25927 dvfsumge 25928 dvfsumabs 25929 coeid3 26145 ulmres 26297 ulmss 26306 chtdif 27068 ppidif 27073 bcmono 27188 axlowdimlem6 28874 inffz 35717 mettrifi 37751 jm2.25 42988 jm2.16nn0 42993 dvgrat 44301 ssinc 45081 ssdec 45082 fzdifsuc2 45308 iuneqfzuzlem 45330 ssuzfz 45345 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 carageniuncllem1 46519 caratheodorylem1 46524 |
| Copyright terms: Public domain | W3C validator |