| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6918 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12860 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6722 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2845 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4580 dom cdm 5659 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: eluz2 12863 uztrn 12875 uzneg 12877 uzss 12880 uz11 12882 eluzadd 12886 eluzaddOLD 12892 subeluzsub 12894 uzm1 12895 uzin 12897 uzind4 12927 uzsupss 12961 elfz5 13538 elfzel1 13545 eluzfz1 13553 fzsplit2 13571 fzopth 13583 ssfzunsn 13592 fzpred 13594 fzpreddisj 13595 uzsplit 13618 uzdisj 13619 fzdif1 13627 fzm1 13629 uznfz 13632 nn0disj 13666 preduz 13672 fzolb 13687 fzoss2 13709 fzouzdisj 13717 fzoun 13718 ige2m2fzo 13749 fzen2 13992 seqp1 14039 seqcl 14045 seqfeq2 14048 seqfveq 14049 seqshft2 14051 seqsplit 14058 seqcaopr3 14060 seqf1olem2a 14063 seqf1olem1 14064 seqf1olem2 14065 seqid 14070 seqhomo 14072 seqz 14073 leexp2a 14195 hashfz 14450 fzsdom2 14451 hashfzo 14452 hashfzp1 14454 seqcoll 14487 rexanuz2 15373 cau4 15380 clim2ser 15676 clim2ser2 15677 climserle 15684 caurcvg 15698 caucvg 15700 fsumcvg 15733 fsumcvg2 15748 fsumsers 15749 fsumm1 15772 fsum1p 15774 fsumrev2 15803 telfsumo 15823 fsumparts 15827 cvgcmp 15837 cvgcmpub 15838 cvgcmpce 15839 isumsplit 15861 clim2prod 15909 clim2div 15910 prodfrec 15916 ntrivcvgtail 15921 fprodcvg 15951 fprodser 15970 fprodm1 15988 fprodeq0 15996 pcaddlem 16913 vdwnnlem2 17021 prmlem0 17130 gsumval2a 18668 telgsumfzs 19975 dvfsumle 25983 dvfsumleOLD 25984 dvfsumge 25985 dvfsumabs 25986 coeid3 26202 ulmres 26354 ulmss 26363 chtdif 27125 ppidif 27130 bcmono 27245 axlowdimlem6 28931 inffz 35752 mettrifi 37786 jm2.25 42990 jm2.16nn0 42995 dvgrat 44303 ssinc 45078 ssdec 45079 fzdifsuc2 45306 iuneqfzuzlem 45328 ssuzfz 45343 ioodvbdlimc1lem2 45928 ioodvbdlimc2lem 45930 carageniuncllem1 46517 caratheodorylem1 46522 |
| Copyright terms: Public domain | W3C validator |