![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 12906 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6758 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | eleqtrdi 2854 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 𝒫 cpw 4622 dom cdm 5700 ‘cfv 6573 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: eluz2 12909 uztrn 12921 uzneg 12923 uzss 12926 uz11 12928 eluzadd 12932 eluzaddOLD 12938 subeluzsub 12940 uzm1 12941 uzin 12943 uzind4 12971 uzsupss 13005 elfz5 13576 elfzel1 13583 eluzfz1 13591 fzsplit2 13609 fzopth 13621 ssfzunsn 13630 fzpred 13632 fzpreddisj 13633 uzsplit 13656 uzdisj 13657 fzm1 13664 uznfz 13667 nn0disj 13701 preduz 13707 fzolb 13722 fzoss2 13744 fzouzdisj 13752 fzoun 13753 ige2m2fzo 13779 fzen2 14020 seqp1 14067 seqcl 14073 seqfeq2 14076 seqfveq 14077 seqshft2 14079 seqsplit 14086 seqcaopr3 14088 seqf1olem2a 14091 seqf1olem1 14092 seqf1olem2 14093 seqid 14098 seqhomo 14100 seqz 14101 leexp2a 14222 hashfz 14476 fzsdom2 14477 hashfzo 14478 hashfzp1 14480 seqcoll 14513 rexanuz2 15398 cau4 15405 clim2ser 15703 clim2ser2 15704 climserle 15711 caurcvg 15725 caucvg 15727 fsumcvg 15760 fsumcvg2 15775 fsumsers 15776 fsumm1 15799 fsum1p 15801 fsumrev2 15830 telfsumo 15850 fsumparts 15854 cvgcmp 15864 cvgcmpub 15865 cvgcmpce 15866 isumsplit 15888 clim2prod 15936 clim2div 15937 prodfrec 15943 ntrivcvgtail 15948 fprodcvg 15978 fprodser 15997 fprodm1 16015 fprodeq0 16023 pcaddlem 16935 vdwnnlem2 17043 prmlem0 17153 gsumval2a 18723 telgsumfzs 20031 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvfsumabs 26083 coeid3 26299 ulmres 26449 ulmss 26458 chtdif 27219 ppidif 27224 bcmono 27339 axlowdimlem6 28980 inffz 35692 mettrifi 37717 jm2.25 42956 jm2.16nn0 42961 dvgrat 44281 ssinc 44989 ssdec 44990 fzdifsuc2 45225 iuneqfzuzlem 45249 ssuzfz 45264 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 carageniuncllem1 46442 caratheodorylem1 46447 |
Copyright terms: Public domain | W3C validator |