| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6856 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
| 2 | uzf 12735 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 3 | 2 | fdmi 6662 | . 2 ⊢ dom ℤ≥ = ℤ |
| 4 | 1, 3 | eleqtrdi 2841 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 𝒫 cpw 4547 dom cdm 5614 ‘cfv 6481 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: eluz2 12738 uztrn 12750 uzneg 12752 uzss 12755 uz11 12757 eluzadd 12761 eluzaddOLD 12767 subeluzsub 12769 uzm1 12770 uzin 12772 uzind4 12804 uzsupss 12838 elfz5 13416 elfzel1 13423 eluzfz1 13431 fzsplit2 13449 fzopth 13461 ssfzunsn 13470 fzpred 13472 fzpreddisj 13473 uzsplit 13496 uzdisj 13497 fzdif1 13505 fzm1 13507 uznfz 13510 nn0disj 13544 preduz 13550 fzolb 13565 fzoss2 13587 fzouzdisj 13595 fzoun 13596 ige2m2fzo 13628 fzen2 13876 seqp1 13923 seqcl 13929 seqfeq2 13932 seqfveq 13933 seqshft2 13935 seqsplit 13942 seqcaopr3 13944 seqf1olem2a 13947 seqf1olem1 13948 seqf1olem2 13949 seqid 13954 seqhomo 13956 seqz 13957 leexp2a 14079 hashfz 14334 fzsdom2 14335 hashfzo 14336 hashfzp1 14338 seqcoll 14371 rexanuz2 15257 cau4 15264 clim2ser 15562 clim2ser2 15563 climserle 15570 caurcvg 15584 caucvg 15586 fsumcvg 15619 fsumcvg2 15634 fsumsers 15635 fsumm1 15658 fsum1p 15660 fsumrev2 15689 telfsumo 15709 fsumparts 15713 cvgcmp 15723 cvgcmpub 15724 cvgcmpce 15725 isumsplit 15747 clim2prod 15795 clim2div 15796 prodfrec 15802 ntrivcvgtail 15807 fprodcvg 15837 fprodser 15856 fprodm1 15874 fprodeq0 15882 pcaddlem 16800 vdwnnlem2 16908 prmlem0 17017 gsumval2a 18593 telgsumfzs 19901 dvfsumle 25953 dvfsumleOLD 25954 dvfsumge 25955 dvfsumabs 25956 coeid3 26172 ulmres 26324 ulmss 26333 chtdif 27095 ppidif 27100 bcmono 27215 axlowdimlem6 28925 inffz 35774 mettrifi 37807 jm2.25 43102 jm2.16nn0 43107 dvgrat 44415 ssinc 45194 ssdec 45195 fzdifsuc2 45421 iuneqfzuzlem 45443 ssuzfz 45458 ioodvbdlimc1lem2 46040 ioodvbdlimc2lem 46042 carageniuncllem1 46629 caratheodorylem1 46634 |
| Copyright terms: Public domain | W3C validator |