Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 12585 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6612 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | eleqtrdi 2849 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: eluz2 12588 uztrn 12600 uzneg 12602 uzss 12605 uz11 12607 eluzadd 12613 subeluzsub 12615 uzm1 12616 uzin 12618 uzind4 12646 uzsupss 12680 elfz5 13248 elfzel1 13255 eluzfz1 13263 fzsplit2 13281 fzopth 13293 ssfzunsn 13302 fzpred 13304 fzpreddisj 13305 uzsplit 13328 uzdisj 13329 fzm1 13336 uznfz 13339 nn0disj 13372 preduz 13378 fzolb 13393 fzoss2 13415 fzouzdisj 13423 fzoun 13424 ige2m2fzo 13450 fzen2 13689 seqp1 13736 seqcl 13743 seqfeq2 13746 seqfveq 13747 seqshft2 13749 seqsplit 13756 seqcaopr3 13758 seqf1olem2a 13761 seqf1olem1 13762 seqf1olem2 13763 seqid 13768 seqhomo 13770 seqz 13771 leexp2a 13890 hashfz 14142 fzsdom2 14143 hashfzo 14144 hashfzp1 14146 seqcoll 14178 rexanuz2 15061 cau4 15068 clim2ser 15366 clim2ser2 15367 climserle 15374 caurcvg 15388 caucvg 15390 fsumcvg 15424 fsumcvg2 15439 fsumsers 15440 fsumm1 15463 fsum1p 15465 fsumrev2 15494 telfsumo 15514 fsumparts 15518 cvgcmp 15528 cvgcmpub 15529 cvgcmpce 15530 isumsplit 15552 clim2prod 15600 clim2div 15601 prodfrec 15607 ntrivcvgtail 15612 fprodcvg 15640 fprodser 15659 fprodm1 15677 fprodeq0 15685 pcaddlem 16589 vdwnnlem2 16697 prmlem0 16807 gsumval2a 18369 telgsumfzs 19590 dvfsumle 25185 dvfsumge 25186 dvfsumabs 25187 coeid3 25401 ulmres 25547 ulmss 25556 chtdif 26307 ppidif 26312 bcmono 26425 axlowdimlem6 27315 inffz 33695 mettrifi 35915 jm2.25 40821 jm2.16nn0 40826 dvgrat 41930 ssinc 42637 ssdec 42638 fzdifsuc2 42849 iuneqfzuzlem 42873 ssuzfz 42888 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 carageniuncllem1 44059 caratheodorylem1 44064 |
Copyright terms: Public domain | W3C validator |