MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzp1m1 Structured version   Visualization version   GIF version

Theorem eluzp1m1 12081
Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
Assertion
Ref Expression
eluzp1m1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))

Proof of Theorem eluzp1m1
StepHypRef Expression
1 peano2zm 11837 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
21ad2antrl 716 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑁 − 1) ∈ ℤ)
3 zre 11796 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11796 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 1re 10438 . . . . . . . . 9 1 ∈ ℝ
6 leaddsub 10916 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
75, 6mp3an2 1429 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
83, 4, 7syl2an 587 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
98biimpa 469 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 1))
109anasss 459 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑁 − 1))
112, 10jca 504 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))
1211ex 405 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
13 peano2z 11835 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
14 eluz1 12061 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
1513, 14syl 17 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
16 eluz1 12061 . . 3 (𝑀 ∈ ℤ → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
1712, 15, 163imtr4d 286 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
1817imp 398 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2051   class class class wbr 4926  cfv 6186  (class class class)co 6975  cr 10333  1c1 10335   + caddc 10337  cle 10474  cmin 10669  cz 11792  cuz 12057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-n0 11707  df-z 11793  df-uz 12058
This theorem is referenced by:  peano2uzr  12116  fzosplitsnm1  12926  fzofzp1b  12949  seqm1  13201  monoord  13214  seqf1olem2  13224  seqid  13229  seqz  13232  serf0  14897  fsumm1  14965  telfsumo  15016  fsumparts  15020  isumsplit  15054  climcnds  15065  fprodm1  15180  pockthlem  16096  vdwnnlem2  16187  efgs1b  18633  imasdsf1olem  22702  wwlksubclwwlk  27597  wwlksubclwwlkOLD  27598  fltnltalem  38715  monoordxrv  41219  stoweidlem11  41757  smonoord  42967
  Copyright terms: Public domain W3C validator