MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzp1m1 Structured version   Visualization version   GIF version

Theorem eluzp1m1 12748
Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
Assertion
Ref Expression
eluzp1m1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))

Proof of Theorem eluzp1m1
StepHypRef Expression
1 peano2zm 12505 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
21ad2antrl 727 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑁 − 1) ∈ ℤ)
3 zre 12462 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12462 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 1re 11114 . . . . . . . . 9 1 ∈ ℝ
6 leaddsub 11590 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
75, 6mp3an2 1450 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
83, 4, 7syl2an 597 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
98biimpa 478 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 1))
109anasss 468 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑁 − 1))
112, 10jca 513 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))
1211ex 414 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
13 peano2z 12503 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
14 eluz1 12726 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
1513, 14syl 17 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
16 eluz1 12726 . . 3 (𝑀 ∈ ℤ → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
1712, 15, 163imtr4d 294 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
1817imp 408 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5104  cfv 6494  (class class class)co 7352  cr 11009  1c1 11011   + caddc 11013  cle 11149  cmin 11344  cz 12458  cuz 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-nn 12113  df-n0 12373  df-z 12459  df-uz 12723
This theorem is referenced by:  peano2uzr  12783  fzosplitsnm1  13602  fzofzp1b  13625  seqm1  13880  monoord  13893  seqf1olem2  13903  seqid  13908  seqz  13911  serf0  15525  fsumm1  15596  telfsumo  15647  fsumparts  15651  isumsplit  15685  climcnds  15696  fprodm1  15810  pockthlem  16737  vdwnnlem2  16828  efgs1b  19477  imasdsf1olem  23678  wwlksubclwwlk  28831  fltnltalem  40903  monoordxrv  43616  stoweidlem11  44147  smonoord  45458
  Copyright terms: Public domain W3C validator