Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndiffz1 Structured version   Visualization version   GIF version

Theorem nndiffz1 32788
Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
nndiffz1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))

Proof of Theorem nndiffz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 12647 . . . . . . . . . . . 12 1 ∈ ℤ
2 nn0z 12638 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13552 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
41, 2, 3sylancr 587 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
5 3anass 1095 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁)))
64, 5bitrdi 287 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁))))
76baibd 539 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
87baibd 539 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (𝑗 ∈ (1...𝑁) ↔ 𝑗𝑁))
98notbid 318 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗𝑁))
10 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℤ)
1110zred 12722 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
12 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
1312zred 12722 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
1411, 13ltnled 11408 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
15 zltp1le 12667 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗))
1614, 15bitr3d 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
172, 16sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
1817adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
199, 18bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗))
2019pm5.32da 579 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
21 1red 11262 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈ ℝ)
22 simpll 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℕ0)
2322nn0red 12588 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ)
2423, 21readdcld 11290 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ)
25 simplr 769 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
2625zred 12722 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
27 0p1e1 12388 . . . . . . . . 9 (0 + 1) = 1
28 0red 11264 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈ ℝ)
2922nn0ge0d 12590 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁)
3028, 23, 21, 29leadd1dd 11877 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1))
3127, 30eqbrtrrid 5179 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1))
32 simpr 484 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗)
3321, 24, 26, 31, 32letrd 11418 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗)
3433ex 412 . . . . . 6 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗))
3534pm4.71rd 562 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
3620, 35bitr4d 282 . . . 4 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗))
3736pm5.32da 579 . . 3 (𝑁 ∈ ℕ0 → ((𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
38 eldif 3961 . . . . 5 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)))
39 elnnz1 12643 . . . . . 6 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
4039anbi1i 624 . . . . 5 ((𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)))
41 anass 468 . . . . 5 (((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4238, 40, 413bitri 297 . . . 4 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4342a1i 11 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))))
44 peano2nn0 12566 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4544nn0zd 12639 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
46 eluz1 12882 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4745, 46syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4837, 43, 473bitr4d 311 . 2 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ 𝑗 ∈ (ℤ‘(𝑁 + 1))))
4948eqrdv 2735 1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cdif 3948   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  eulerpartlems  34362  eulerpartlemsv3  34363  eulerpartlemgc  34364
  Copyright terms: Public domain W3C validator