Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndiffz1 Structured version   Visualization version   GIF version

Theorem nndiffz1 31997
Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
nndiffz1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))

Proof of Theorem nndiffz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 12592 . . . . . . . . . . . 12 1 ∈ ℤ
2 nn0z 12583 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13489 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
41, 2, 3sylancr 588 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
5 3anass 1096 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁)))
64, 5bitrdi 287 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁))))
76baibd 541 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
87baibd 541 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (𝑗 ∈ (1...𝑁) ↔ 𝑗𝑁))
98notbid 318 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗𝑁))
10 simpl 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℤ)
1110zred 12666 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
12 simpr 486 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
1312zred 12666 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
1411, 13ltnled 11361 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
15 zltp1le 12612 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗))
1614, 15bitr3d 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
172, 16sylan 581 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
1817adantr 482 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
199, 18bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗))
2019pm5.32da 580 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
21 1red 11215 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈ ℝ)
22 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℕ0)
2322nn0red 12533 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ)
2423, 21readdcld 11243 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ)
25 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
2625zred 12666 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
27 0p1e1 12334 . . . . . . . . 9 (0 + 1) = 1
28 0red 11217 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈ ℝ)
2922nn0ge0d 12535 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁)
3028, 23, 21, 29leadd1dd 11828 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1))
3127, 30eqbrtrrid 5185 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1))
32 simpr 486 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗)
3321, 24, 26, 31, 32letrd 11371 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗)
3433ex 414 . . . . . 6 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗))
3534pm4.71rd 564 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
3620, 35bitr4d 282 . . . 4 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗))
3736pm5.32da 580 . . 3 (𝑁 ∈ ℕ0 → ((𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
38 eldif 3959 . . . . 5 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)))
39 elnnz1 12588 . . . . . 6 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
4039anbi1i 625 . . . . 5 ((𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)))
41 anass 470 . . . . 5 (((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4238, 40, 413bitri 297 . . . 4 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4342a1i 11 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))))
44 peano2nn0 12512 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4544nn0zd 12584 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
46 eluz1 12826 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4745, 46syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4837, 43, 473bitr4d 311 . 2 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ 𝑗 ∈ (ℤ‘(𝑁 + 1))))
4948eqrdv 2731 1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cdif 3946   class class class wbr 5149  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cn 12212  0cn0 12472  cz 12558  cuz 12822  ...cfz 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485
This theorem is referenced by:  eulerpartlems  33359  eulerpartlemsv3  33360  eulerpartlemgc  33361
  Copyright terms: Public domain W3C validator