Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndiffz1 Structured version   Visualization version   GIF version

Theorem nndiffz1 32763
Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
nndiffz1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))

Proof of Theorem nndiffz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 12622 . . . . . . . . . . . 12 1 ∈ ℤ
2 nn0z 12613 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13529 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
41, 2, 3sylancr 587 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
5 3anass 1094 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁)))
64, 5bitrdi 287 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁))))
76baibd 539 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
87baibd 539 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (𝑗 ∈ (1...𝑁) ↔ 𝑗𝑁))
98notbid 318 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗𝑁))
10 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℤ)
1110zred 12697 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
12 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
1312zred 12697 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
1411, 13ltnled 11382 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
15 zltp1le 12642 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗))
1614, 15bitr3d 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
172, 16sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
1817adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
199, 18bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗))
2019pm5.32da 579 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
21 1red 11236 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈ ℝ)
22 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℕ0)
2322nn0red 12563 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ)
2423, 21readdcld 11264 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ)
25 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
2625zred 12697 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
27 0p1e1 12362 . . . . . . . . 9 (0 + 1) = 1
28 0red 11238 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈ ℝ)
2922nn0ge0d 12565 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁)
3028, 23, 21, 29leadd1dd 11851 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1))
3127, 30eqbrtrrid 5155 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1))
32 simpr 484 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗)
3321, 24, 26, 31, 32letrd 11392 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗)
3433ex 412 . . . . . 6 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗))
3534pm4.71rd 562 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
3620, 35bitr4d 282 . . . 4 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗))
3736pm5.32da 579 . . 3 (𝑁 ∈ ℕ0 → ((𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
38 eldif 3936 . . . . 5 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)))
39 elnnz1 12618 . . . . . 6 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
4039anbi1i 624 . . . . 5 ((𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)))
41 anass 468 . . . . 5 (((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4238, 40, 413bitri 297 . . . 4 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4342a1i 11 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))))
44 peano2nn0 12541 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4544nn0zd 12614 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
46 eluz1 12856 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4745, 46syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4837, 43, 473bitr4d 311 . 2 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ 𝑗 ∈ (ℤ‘(𝑁 + 1))))
4948eqrdv 2733 1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cdif 3923   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cn 12240  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  eulerpartlems  34392  eulerpartlemsv3  34393  eulerpartlemgc  34394
  Copyright terms: Public domain W3C validator