Step | Hyp | Ref
| Expression |
1 | | 1z 12280 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
2 | | nn0z 12273 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
3 | | elfz1 13173 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ) → (𝑗
∈ (1...𝑁) ↔
(𝑗 ∈ ℤ ∧ 1
≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) |
4 | 1, 2, 3 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) |
5 | | 3anass 1093 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 1 ≤
𝑗 ∧ 𝑗 ≤ 𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) |
6 | 4, 5 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁)))) |
7 | 6 | baibd 539 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁))) |
8 | 7 | baibd 539 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ 1 ≤ 𝑗) →
(𝑗 ∈ (1...𝑁) ↔ 𝑗 ≤ 𝑁)) |
9 | 8 | notbid 317 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ 1 ≤ 𝑗) →
(¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗 ≤ 𝑁)) |
10 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈
ℤ) |
11 | 10 | zred 12355 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈
ℝ) |
12 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈
ℤ) |
13 | 12 | zred 12355 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈
ℝ) |
14 | 11, 13 | ltnled 11052 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑁)) |
15 | | zltp1le 12300 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗)) |
16 | 14, 15 | bitr3d 280 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬
𝑗 ≤ 𝑁 ↔ (𝑁 + 1) ≤ 𝑗)) |
17 | 2, 16 | sylan 579 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ (¬ 𝑗 ≤ 𝑁 ↔ (𝑁 + 1) ≤ 𝑗)) |
18 | 17 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ 1 ≤ 𝑗) →
(¬ 𝑗 ≤ 𝑁 ↔ (𝑁 + 1) ≤ 𝑗)) |
19 | 9, 18 | bitrd 278 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ 1 ≤ 𝑗) →
(¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗)) |
20 | 19 | pm5.32da 578 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ ((1 ≤ 𝑗 ∧
¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗))) |
21 | | 1red 10907 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈
ℝ) |
22 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈
ℕ0) |
23 | 22 | nn0red 12224 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ) |
24 | 23, 21 | readdcld 10935 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ) |
25 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ) |
26 | 25 | zred 12355 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ) |
27 | | 0p1e1 12025 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
28 | | 0red 10909 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈
ℝ) |
29 | 22 | nn0ge0d 12226 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁) |
30 | 28, 23, 21, 29 | leadd1dd 11519 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1)) |
31 | 27, 30 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1)) |
32 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗) |
33 | 21, 24, 26, 31, 32 | letrd 11062 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗) |
34 | 33 | ex 412 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗)) |
35 | 34 | pm4.71rd 562 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗))) |
36 | 20, 35 | bitr4d 281 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ ((1 ≤ 𝑗 ∧
¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗)) |
37 | 36 | pm5.32da 578 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝑗 ∈ ℤ
∧ (1 ≤ 𝑗 ∧ ¬
𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗))) |
38 | | eldif 3893 |
. . . . 5
⊢ (𝑗 ∈ (ℕ ∖
(1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬
𝑗 ∈ (1...𝑁))) |
39 | | elnnz1 12276 |
. . . . . 6
⊢ (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤
𝑗)) |
40 | 39 | anbi1i 623 |
. . . . 5
⊢ ((𝑗 ∈ ℕ ∧ ¬
𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁))) |
41 | | anass 468 |
. . . . 5
⊢ (((𝑗 ∈ ℤ ∧ 1 ≤
𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))) |
42 | 38, 40, 41 | 3bitri 296 |
. . . 4
⊢ (𝑗 ∈ (ℕ ∖
(1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤
𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))) |
43 | 42 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑗 ∈ (ℕ
∖ (1...𝑁)) ↔
(𝑗 ∈ ℤ ∧ (1
≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))) |
44 | | peano2nn0 12203 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
45 | 44 | nn0zd 12353 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
46 | | eluz1 12515 |
. . . 4
⊢ ((𝑁 + 1) ∈ ℤ →
(𝑗 ∈
(ℤ≥‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗))) |
47 | 45, 46 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑗 ∈
(ℤ≥‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗))) |
48 | 37, 43, 47 | 3bitr4d 310 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑗 ∈ (ℕ
∖ (1...𝑁)) ↔
𝑗 ∈
(ℤ≥‘(𝑁 + 1)))) |
49 | 48 | eqrdv 2736 |
1
⊢ (𝑁 ∈ ℕ0
→ (ℕ ∖ (1...𝑁)) = (ℤ≥‘(𝑁 + 1))) |