Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndiffz1 Structured version   Visualization version   GIF version

Theorem nndiffz1 32791
Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
nndiffz1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))

Proof of Theorem nndiffz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 12673 . . . . . . . . . . . 12 1 ∈ ℤ
2 nn0z 12664 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13572 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
41, 2, 3sylancr 586 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
5 3anass 1095 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁)))
64, 5bitrdi 287 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁))))
76baibd 539 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
87baibd 539 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (𝑗 ∈ (1...𝑁) ↔ 𝑗𝑁))
98notbid 318 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗𝑁))
10 simpl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℤ)
1110zred 12747 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
12 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
1312zred 12747 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
1411, 13ltnled 11437 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
15 zltp1le 12693 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗))
1614, 15bitr3d 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
172, 16sylan 579 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
1817adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
199, 18bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗))
2019pm5.32da 578 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
21 1red 11291 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈ ℝ)
22 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℕ0)
2322nn0red 12614 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ)
2423, 21readdcld 11319 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ)
25 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
2625zred 12747 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
27 0p1e1 12415 . . . . . . . . 9 (0 + 1) = 1
28 0red 11293 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈ ℝ)
2922nn0ge0d 12616 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁)
3028, 23, 21, 29leadd1dd 11904 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1))
3127, 30eqbrtrrid 5202 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1))
32 simpr 484 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗)
3321, 24, 26, 31, 32letrd 11447 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗)
3433ex 412 . . . . . 6 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗))
3534pm4.71rd 562 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
3620, 35bitr4d 282 . . . 4 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗))
3736pm5.32da 578 . . 3 (𝑁 ∈ ℕ0 → ((𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
38 eldif 3986 . . . . 5 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)))
39 elnnz1 12669 . . . . . 6 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
4039anbi1i 623 . . . . 5 ((𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)))
41 anass 468 . . . . 5 (((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4238, 40, 413bitri 297 . . . 4 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4342a1i 11 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))))
44 peano2nn0 12593 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4544nn0zd 12665 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
46 eluz1 12907 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4745, 46syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4837, 43, 473bitr4d 311 . 2 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ 𝑗 ∈ (ℤ‘(𝑁 + 1))))
4948eqrdv 2738 1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  eulerpartlems  34325  eulerpartlemsv3  34326  eulerpartlemgc  34327
  Copyright terms: Public domain W3C validator