Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndiffz1 Structured version   Visualization version   GIF version

Theorem nndiffz1 31736
Description: Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
nndiffz1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))

Proof of Theorem nndiffz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1z 12538 . . . . . . . . . . . 12 1 ∈ ℤ
2 nn0z 12529 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13435 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
41, 2, 3sylancr 588 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁)))
5 3anass 1096 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁)))
64, 5bitrdi 287 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗𝑗𝑁))))
76baibd 541 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑗 ∈ (1...𝑁) ↔ (1 ≤ 𝑗𝑗𝑁)))
87baibd 541 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (𝑗 ∈ (1...𝑁) ↔ 𝑗𝑁))
98notbid 318 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ ¬ 𝑗𝑁))
10 simpl 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℤ)
1110zred 12612 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑁 ∈ ℝ)
12 simpr 486 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
1312zred 12612 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
1411, 13ltnled 11307 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
15 zltp1le 12558 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁 < 𝑗 ↔ (𝑁 + 1) ≤ 𝑗))
1614, 15bitr3d 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
172, 16sylan 581 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
1817adantr 482 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗𝑁 ↔ (𝑁 + 1) ≤ 𝑗))
199, 18bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ 1 ≤ 𝑗) → (¬ 𝑗 ∈ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑗))
2019pm5.32da 580 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
21 1red 11161 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ∈ ℝ)
22 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℕ0)
2322nn0red 12479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑁 ∈ ℝ)
2423, 21readdcld 11189 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ∈ ℝ)
25 simplr 768 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
2625zred 12612 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
27 0p1e1 12280 . . . . . . . . 9 (0 + 1) = 1
28 0red 11163 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ∈ ℝ)
2922nn0ge0d 12481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 0 ≤ 𝑁)
3028, 23, 21, 29leadd1dd 11774 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (0 + 1) ≤ (𝑁 + 1))
3127, 30eqbrtrrid 5142 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ (𝑁 + 1))
32 simpr 486 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → (𝑁 + 1) ≤ 𝑗)
3321, 24, 26, 31, 32letrd 11317 . . . . . . 7 (((𝑁 ∈ ℕ0𝑗 ∈ ℤ) ∧ (𝑁 + 1) ≤ 𝑗) → 1 ≤ 𝑗)
3433ex 414 . . . . . 6 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 → 1 ≤ 𝑗))
3534pm4.71rd 564 . . . . 5 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑗 ↔ (1 ≤ 𝑗 ∧ (𝑁 + 1) ≤ 𝑗)))
3620, 35bitr4d 282 . . . 4 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → ((1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑗))
3736pm5.32da 580 . . 3 (𝑁 ∈ ℕ0 → ((𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
38 eldif 3921 . . . . 5 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)))
39 elnnz1 12534 . . . . . 6 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
4039anbi1i 625 . . . . 5 ((𝑗 ∈ ℕ ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)))
41 anass 470 . . . . 5 (((𝑗 ∈ ℤ ∧ 1 ≤ 𝑗) ∧ ¬ 𝑗 ∈ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4238, 40, 413bitri 297 . . . 4 (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁))))
4342a1i 11 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ (𝑗 ∈ ℤ ∧ (1 ≤ 𝑗 ∧ ¬ 𝑗 ∈ (1...𝑁)))))
44 peano2nn0 12458 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4544nn0zd 12530 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
46 eluz1 12772 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4745, 46syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑗 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑗)))
4837, 43, 473bitr4d 311 . 2 (𝑁 ∈ ℕ0 → (𝑗 ∈ (ℕ ∖ (1...𝑁)) ↔ 𝑗 ∈ (ℤ‘(𝑁 + 1))))
4948eqrdv 2731 1 (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cdif 3908   class class class wbr 5106  cfv 6497  (class class class)co 7358  0cc0 11056  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cn 12158  0cn0 12418  cz 12504  cuz 12768  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431
This theorem is referenced by:  eulerpartlems  33017  eulerpartlemsv3  33018  eulerpartlemgc  33019
  Copyright terms: Public domain W3C validator