MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1i Structured version   Visualization version   GIF version

Theorem eluz1i 12777
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
Hypothesis
Ref Expression
eluz.1 𝑀 ∈ ℤ
Assertion
Ref Expression
eluz1i (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz1i
StepHypRef Expression
1 eluz.1 . 2 𝑀 ∈ ℤ
2 eluz1 12773 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
31, 2ax-mp 5 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109   class class class wbr 5102  cfv 6499  cle 11185  cz 12505  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-neg 11384  df-z 12506  df-uz 12770
This theorem is referenced by:  eluzaddiOLD  12801  eluzsubiOLD  12803  eluz2b1  12854  faclbnd4lem1  14234  climcndslem1  15791  ef01bndlem  16128  sin01bnd  16129  cos01bnd  16130  sin01gt0  16134  dvradcnv  26363  bposlem3  27230  bposlem4  27231  bposlem5  27232  bposlem9  27236  istrkg3ld  28441  axlowdimlem16  28937  2sqr3minply  33763  ballotlem2  34473  nn0prpwlem  36303  jm2.20nn  42979  stoweidlem17  46008  wallispilem4  46059  nn0o1gt2ALTV  47688  ackval42  48678
  Copyright terms: Public domain W3C validator