Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz1i | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
eluz1i | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | eluz1 12515 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: eluzaddi 12540 eluzsubi 12541 eluz2b1 12588 fz0to4untppr 13288 faclbnd4lem1 13935 climcndslem1 15489 ef01bndlem 15821 sin01bnd 15822 cos01bnd 15823 sin01gt0 15827 dvradcnv 25485 bposlem3 26339 bposlem4 26340 bposlem5 26341 bposlem9 26345 istrkg3ld 26726 axlowdimlem16 27228 ballotlem2 32355 nn0prpwlem 34438 jm2.20nn 40735 stoweidlem17 43448 wallispilem4 43499 nn0o1gt2ALTV 45034 ackval42 45930 |
Copyright terms: Public domain | W3C validator |