| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz1i | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluz.1 | ⊢ 𝑀 ∈ ℤ |
| Ref | Expression |
|---|---|
| eluz1i | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
| 2 | eluz1 12797 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: eluzaddiOLD 12825 eluzsubiOLD 12827 eluz2b1 12878 faclbnd4lem1 14258 climcndslem1 15815 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 sin01gt0 16158 dvradcnv 26330 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem9 27203 istrkg3ld 28388 axlowdimlem16 28884 2sqr3minply 33770 ballotlem2 34480 nn0prpwlem 36310 jm2.20nn 42986 stoweidlem17 46015 wallispilem4 46066 nn0o1gt2ALTV 47695 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |