![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz1i | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
eluz1i | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | eluz1 11934 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 ≤ cle 10364 ℤcz 11666 ℤ≥cuz 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-cnex 10280 ax-resscn 10281 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-neg 10559 df-z 11667 df-uz 11931 |
This theorem is referenced by: eluzaddi 11957 eluzsubi 11958 eluz2b1 12004 fz0to4untppr 12697 faclbnd4lem1 13333 climcndslem1 14919 ef01bndlem 15250 sin01bnd 15251 cos01bnd 15252 sin01gt0 15256 dvradcnv 24516 bposlem3 25363 bposlem4 25364 bposlem5 25365 bposlem9 25369 istrkg3ld 25712 axlowdimlem16 26194 ballotlem2 31067 nn0prpwlem 32829 jm2.20nn 38349 stoweidlem17 40977 wallispilem4 41028 nn0o1gt2ALTV 42387 |
Copyright terms: Public domain | W3C validator |