MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1i Structured version   Visualization version   GIF version

Theorem eluz1i 12884
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
Hypothesis
Ref Expression
eluz.1 𝑀 ∈ ℤ
Assertion
Ref Expression
eluz1i (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz1i
StepHypRef Expression
1 eluz.1 . 2 𝑀 ∈ ℤ
2 eluz1 12880 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
31, 2ax-mp 5 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106   class class class wbr 5148  cfv 6563  cle 11294  cz 12611  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-neg 11493  df-z 12612  df-uz 12877
This theorem is referenced by:  eluzaddiOLD  12908  eluzsubiOLD  12910  eluz2b1  12959  faclbnd4lem1  14329  climcndslem1  15882  ef01bndlem  16217  sin01bnd  16218  cos01bnd  16219  sin01gt0  16223  dvradcnv  26479  bposlem3  27345  bposlem4  27346  bposlem5  27347  bposlem9  27351  istrkg3ld  28484  axlowdimlem16  28987  2sqr3minply  33753  ballotlem2  34470  nn0prpwlem  36305  jm2.20nn  42986  stoweidlem17  45973  wallispilem4  46024  nn0o1gt2ALTV  47619  ackval42  48546
  Copyright terms: Public domain W3C validator