MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1i Structured version   Visualization version   GIF version

Theorem eluz1i 12808
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
Hypothesis
Ref Expression
eluz.1 𝑀 ∈ ℤ
Assertion
Ref Expression
eluz1i (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))

Proof of Theorem eluz1i
StepHypRef Expression
1 eluz.1 . 2 𝑀 ∈ ℤ
2 eluz1 12804 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
31, 2ax-mp 5 1 (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109   class class class wbr 5110  cfv 6514  cle 11216  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-neg 11415  df-z 12537  df-uz 12801
This theorem is referenced by:  eluzaddiOLD  12832  eluzsubiOLD  12834  eluz2b1  12885  faclbnd4lem1  14265  climcndslem1  15822  ef01bndlem  16159  sin01bnd  16160  cos01bnd  16161  sin01gt0  16165  dvradcnv  26337  bposlem3  27204  bposlem4  27205  bposlem5  27206  bposlem9  27210  istrkg3ld  28395  axlowdimlem16  28891  2sqr3minply  33777  ballotlem2  34487  nn0prpwlem  36317  jm2.20nn  42993  stoweidlem17  46022  wallispilem4  46073  nn0o1gt2ALTV  47699  ackval42  48689
  Copyright terms: Public domain W3C validator