Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz1i | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
eluz1i | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | eluz1 12614 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 ≤ cle 11038 ℤcz 12347 ℤ≥cuz 12610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-cnex 10955 ax-resscn 10956 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-ov 7298 df-neg 11236 df-z 12348 df-uz 12611 |
This theorem is referenced by: eluzaddi 12639 eluzsubi 12640 eluz2b1 12687 fz0to4untppr 13387 faclbnd4lem1 14035 climcndslem1 15589 ef01bndlem 15921 sin01bnd 15922 cos01bnd 15923 sin01gt0 15927 dvradcnv 25608 bposlem3 26462 bposlem4 26463 bposlem5 26464 bposlem9 26468 istrkg3ld 26850 axlowdimlem16 27353 ballotlem2 32483 nn0prpwlem 34539 jm2.20nn 40843 stoweidlem17 43593 wallispilem4 43644 nn0o1gt2ALTV 45186 ackval42 46082 |
Copyright terms: Public domain | W3C validator |