| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz1i | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluz.1 | ⊢ 𝑀 ∈ ℤ |
| Ref | Expression |
|---|---|
| eluz1i | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
| 2 | eluz1 12804 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: eluzaddiOLD 12832 eluzsubiOLD 12834 eluz2b1 12885 faclbnd4lem1 14265 climcndslem1 15822 ef01bndlem 16159 sin01bnd 16160 cos01bnd 16161 sin01gt0 16165 dvradcnv 26337 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem9 27210 istrkg3ld 28395 axlowdimlem16 28891 2sqr3minply 33777 ballotlem2 34487 nn0prpwlem 36317 jm2.20nn 42993 stoweidlem17 46022 wallispilem4 46073 nn0o1gt2ALTV 47699 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |