Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzd Structured version   Visualization version   GIF version

Theorem eluzd 45405
Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eluzd.1 𝑍 = (ℤ𝑀)
eluzd.2 (𝜑𝑀 ∈ ℤ)
eluzd.3 (𝜑𝑁 ∈ ℤ)
eluzd.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
eluzd (𝜑𝑁𝑍)

Proof of Theorem eluzd
StepHypRef Expression
1 eluzd.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 eluzd.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 eluzd.4 . . 3 (𝜑𝑀𝑁)
4 eluz2 12799 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
51, 2, 3, 4syl3anbrc 1344 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzd.1 . 2 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2839 1 (𝜑𝑁𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  cle 11209  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-neg 11408  df-z 12530  df-uz 12794
This theorem is referenced by:  uzublem  45426  uzinico  45557  uzubioo  45563  limsupubuzlem  45710  limsupequzlem  45720  limsupmnfuzlem  45724  limsupequzmptlem  45726  limsupre3uzlem  45733  supcnvlimsup  45738  limsup10exlem  45770  smflimsuplem4  46821  smfliminflem  46828
  Copyright terms: Public domain W3C validator