Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzd Structured version   Visualization version   GIF version

Theorem eluzd 45324
Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eluzd.1 𝑍 = (ℤ𝑀)
eluzd.2 (𝜑𝑀 ∈ ℤ)
eluzd.3 (𝜑𝑁 ∈ ℤ)
eluzd.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
eluzd (𝜑𝑁𝑍)

Proof of Theorem eluzd
StepHypRef Expression
1 eluzd.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 eluzd.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 eluzd.4 . . 3 (𝜑𝑀𝑁)
4 eluz2 12909 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
51, 2, 3, 4syl3anbrc 1343 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzd.1 . 2 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2855 1 (𝜑𝑁𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  uzublem  45345  uzinico  45478  uzubioo  45485  limsupubuzlem  45633  limsupequzlem  45643  limsupmnfuzlem  45647  limsupequzmptlem  45649  limsupre3uzlem  45656  supcnvlimsup  45661  limsup10exlem  45693  smflimsuplem4  46744  smfliminflem  46751
  Copyright terms: Public domain W3C validator