| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzd | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| eluzd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| eluzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| eluzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| eluzd | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | eluzd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | eluzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 4 | eluz2 12850 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 5 | 1, 2, 3, 4 | syl3anbrc 1343 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | eluzd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 5, 6 | eleqtrrdi 2844 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 ≤ cle 11262 ℤcz 12580 ℤ≥cuz 12844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-cnex 11177 ax-resscn 11178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 df-ov 7402 df-neg 11461 df-z 12581 df-uz 12845 |
| This theorem is referenced by: uzublem 45385 uzinico 45517 uzubioo 45524 limsupubuzlem 45671 limsupequzlem 45681 limsupmnfuzlem 45685 limsupequzmptlem 45687 limsupre3uzlem 45694 supcnvlimsup 45699 limsup10exlem 45731 smflimsuplem4 46782 smfliminflem 46789 |
| Copyright terms: Public domain | W3C validator |