| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzd | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| eluzd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| eluzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| eluzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| eluzd | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | eluzd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | eluzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 4 | eluz2 12775 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 5 | 1, 2, 3, 4 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | eluzd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 5, 6 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzublem 45399 uzinico 45530 uzubioo 45536 limsupubuzlem 45683 limsupequzlem 45693 limsupmnfuzlem 45697 limsupequzmptlem 45699 limsupre3uzlem 45706 supcnvlimsup 45711 limsup10exlem 45743 smflimsuplem4 46794 smfliminflem 46801 |
| Copyright terms: Public domain | W3C validator |