| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzd | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| eluzd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| eluzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| eluzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| eluzd | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | eluzd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | eluzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 4 | eluz2 12741 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 5 | 1, 2, 3, 4 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | eluzd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 5, 6 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: uzublem 45413 uzinico 45544 uzubioo 45550 limsupubuzlem 45697 limsupequzlem 45707 limsupmnfuzlem 45711 limsupequzmptlem 45713 limsupre3uzlem 45720 supcnvlimsup 45725 limsup10exlem 45757 smflimsuplem4 46808 smfliminflem 46815 |
| Copyright terms: Public domain | W3C validator |