Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzd Structured version   Visualization version   GIF version

Theorem eluzd 45403
Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eluzd.1 𝑍 = (ℤ𝑀)
eluzd.2 (𝜑𝑀 ∈ ℤ)
eluzd.3 (𝜑𝑁 ∈ ℤ)
eluzd.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
eluzd (𝜑𝑁𝑍)

Proof of Theorem eluzd
StepHypRef Expression
1 eluzd.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 eluzd.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 eluzd.4 . . 3 (𝜑𝑀𝑁)
4 eluz2 12863 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
51, 2, 3, 4syl3anbrc 1344 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzd.1 . 2 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2846 1 (𝜑𝑁𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  cle 11275  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-neg 11474  df-z 12594  df-uz 12858
This theorem is referenced by:  uzublem  45424  uzinico  45555  uzubioo  45561  limsupubuzlem  45708  limsupequzlem  45718  limsupmnfuzlem  45722  limsupequzmptlem  45724  limsupre3uzlem  45731  supcnvlimsup  45736  limsup10exlem  45768  smflimsuplem4  46819  smfliminflem  46826
  Copyright terms: Public domain W3C validator