| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzd | Structured version Visualization version GIF version | ||
| Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| eluzd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| eluzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| eluzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| eluzd | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | eluzd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | eluzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 4 | eluz2 12738 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 5 | 1, 2, 3, 4 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | eluzd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 5, 6 | eleqtrrdi 2842 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzublem 45538 uzinico 45669 uzubioo 45675 limsupubuzlem 45820 limsupequzlem 45830 limsupmnfuzlem 45834 limsupequzmptlem 45836 limsupre3uzlem 45843 supcnvlimsup 45848 limsup10exlem 45880 smflimsuplem4 46931 smfliminflem 46938 |
| Copyright terms: Public domain | W3C validator |