Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzd Structured version   Visualization version   GIF version

Theorem eluzd 44791
Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eluzd.1 𝑍 = (ℤ𝑀)
eluzd.2 (𝜑𝑀 ∈ ℤ)
eluzd.3 (𝜑𝑁 ∈ ℤ)
eluzd.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
eluzd (𝜑𝑁𝑍)

Proof of Theorem eluzd
StepHypRef Expression
1 eluzd.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 eluzd.3 . . 3 (𝜑𝑁 ∈ ℤ)
3 eluzd.4 . . 3 (𝜑𝑀𝑁)
4 eluz2 12859 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
51, 2, 3, 4syl3anbrc 1341 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzd.1 . 2 𝑍 = (ℤ𝑀)
75, 6eleqtrrdi 2840 1 (𝜑𝑁𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  cle 11280  cz 12589  cuz 12853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-cnex 11195  ax-resscn 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-neg 11478  df-z 12590  df-uz 12854
This theorem is referenced by:  uzublem  44812  uzinico  44945  uzubioo  44952  limsupubuzlem  45100  limsupequzlem  45110  limsupmnfuzlem  45114  limsupequzmptlem  45116  limsupre3uzlem  45123  supcnvlimsup  45128  limsup10exlem  45160  smflimsuplem4  46211  smfliminflem  46218
  Copyright terms: Public domain W3C validator