Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzubioo | Structured version Visualization version GIF version |
Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzubioo.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzubioo.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzubioo.3 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
Ref | Expression |
---|---|
uzubioo | ⊢ (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzubioo.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
2 | 1 | rexrd 10883 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
3 | pnfxr 10887 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | 1 | ceilcld 42665 | . . . . . 6 ⊢ (𝜑 → (⌈‘𝑋) ∈ ℤ) |
6 | 1zzd 12208 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
7 | 5, 6 | zaddcld 12286 | . . . . 5 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ∈ ℤ) |
8 | 7 | zred 12282 | . . . 4 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ∈ ℝ) |
9 | uzubioo.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | 9 | zred 12282 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
11 | 8, 10 | ifcld 4485 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℝ) |
12 | 5 | zred 12282 | . . . . 5 ⊢ (𝜑 → (⌈‘𝑋) ∈ ℝ) |
13 | 1 | ceilged 42659 | . . . . 5 ⊢ (𝜑 → 𝑋 ≤ (⌈‘𝑋)) |
14 | 12 | ltp1d 11762 | . . . . 5 ⊢ (𝜑 → (⌈‘𝑋) < ((⌈‘𝑋) + 1)) |
15 | 1, 12, 8, 13, 14 | lelttrd 10990 | . . . 4 ⊢ (𝜑 → 𝑋 < ((⌈‘𝑋) + 1)) |
16 | 10, 8 | max2d 42673 | . . . 4 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
17 | 1, 8, 11, 15, 16 | ltletrd 10992 | . . 3 ⊢ (𝜑 → 𝑋 < if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
18 | 11 | ltpnfd 12713 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) < +∞) |
19 | 2, 4, 11, 17, 18 | eliood 42711 | . 2 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞)) |
20 | uzubioo.2 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
21 | 7, 9 | ifcld 4485 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℤ) |
22 | max1 12775 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ((⌈‘𝑋) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) | |
23 | 10, 8, 22 | syl2anc 587 | . . 3 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
24 | 20, 9, 21, 23 | eluzd 42622 | . 2 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) |
25 | eleq1 2825 | . . 3 ⊢ (𝑘 = if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) → (𝑘 ∈ 𝑍 ↔ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍)) | |
26 | 25 | rspcev 3537 | . 2 ⊢ ((if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞) ∧ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
27 | 19, 24, 26 | syl2anc 587 | 1 ⊢ (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ifcif 4439 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 1c1 10730 + caddc 10732 +∞cpnf 10864 ℝ*cxr 10866 ≤ cle 10868 ℤcz 12176 ℤ≥cuz 12438 (,)cioo 12935 ⌈cceil 13366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-ioo 12939 df-fl 13367 df-ceil 13368 |
This theorem is referenced by: uzubico 42781 uzubioo2 42782 |
Copyright terms: Public domain | W3C validator |