Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzubioo Structured version   Visualization version   GIF version

Theorem uzubioo 44270
Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzubioo.1 (𝜑𝑀 ∈ ℤ)
uzubioo.2 𝑍 = (ℤ𝑀)
uzubioo.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
uzubioo (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑋   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzubioo
StepHypRef Expression
1 uzubioo.3 . . . 4 (𝜑𝑋 ∈ ℝ)
21rexrd 11263 . . 3 (𝜑𝑋 ∈ ℝ*)
3 pnfxr 11267 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
51ceilcld 13807 . . . . . 6 (𝜑 → (⌈‘𝑋) ∈ ℤ)
6 1zzd 12592 . . . . . 6 (𝜑 → 1 ∈ ℤ)
75, 6zaddcld 12669 . . . . 5 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℤ)
87zred 12665 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℝ)
9 uzubioo.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
109zred 12665 . . . 4 (𝜑𝑀 ∈ ℝ)
118, 10ifcld 4574 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℝ)
125zred 12665 . . . . 5 (𝜑 → (⌈‘𝑋) ∈ ℝ)
131ceilged 13810 . . . . 5 (𝜑𝑋 ≤ (⌈‘𝑋))
1412ltp1d 12143 . . . . 5 (𝜑 → (⌈‘𝑋) < ((⌈‘𝑋) + 1))
151, 12, 8, 13, 14lelttrd 11371 . . . 4 (𝜑𝑋 < ((⌈‘𝑋) + 1))
1610, 8max2d 44158 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
171, 8, 11, 15, 16ltletrd 11373 . . 3 (𝜑𝑋 < if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
1811ltpnfd 13100 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) < +∞)
192, 4, 11, 17, 18eliood 44201 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞))
20 uzubioo.2 . . 3 𝑍 = (ℤ𝑀)
217, 9ifcld 4574 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℤ)
22 max1 13163 . . . 4 ((𝑀 ∈ ℝ ∧ ((⌈‘𝑋) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2310, 8, 22syl2anc 584 . . 3 (𝜑𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2420, 9, 21, 23eluzd 44109 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍)
25 eleq1 2821 . . 3 (𝑘 = if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) → (𝑘𝑍 ↔ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍))
2625rspcev 3612 . 2 ((if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞) ∧ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
2719, 24, 26syl2anc 584 1 (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wrex 3070  ifcif 4528   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108  1c1 11110   + caddc 11112  +∞cpnf 11244  *cxr 11246  cle 11248  cz 12557  cuz 12821  (,)cioo 13323  cceil 13755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-ioo 13327  df-fl 13756  df-ceil 13757
This theorem is referenced by:  uzubico  44271  uzubioo2  44272
  Copyright terms: Public domain W3C validator