Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzubioo Structured version   Visualization version   GIF version

Theorem uzubioo 42247
 Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
uzubioo.1 (𝜑𝑀 ∈ ℤ)
uzubioo.2 𝑍 = (ℤ𝑀)
uzubioo.3 (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
uzubioo (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑋   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzubioo
StepHypRef Expression
1 uzubioo.3 . . . 4 (𝜑𝑋 ∈ ℝ)
21rexrd 10683 . . 3 (𝜑𝑋 ∈ ℝ*)
3 pnfxr 10687 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
51ceilcld 42132 . . . . . 6 (𝜑 → (⌈‘𝑋) ∈ ℤ)
6 1zzd 12004 . . . . . 6 (𝜑 → 1 ∈ ℤ)
75, 6zaddcld 12082 . . . . 5 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℤ)
87zred 12078 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ∈ ℝ)
9 uzubioo.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
109zred 12078 . . . 4 (𝜑𝑀 ∈ ℝ)
118, 10ifcld 4470 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℝ)
125zred 12078 . . . . 5 (𝜑 → (⌈‘𝑋) ∈ ℝ)
131ceilged 42126 . . . . 5 (𝜑𝑋 ≤ (⌈‘𝑋))
1412ltp1d 11562 . . . . 5 (𝜑 → (⌈‘𝑋) < ((⌈‘𝑋) + 1))
151, 12, 8, 13, 14lelttrd 10790 . . . 4 (𝜑𝑋 < ((⌈‘𝑋) + 1))
1610, 8max2d 42140 . . . 4 (𝜑 → ((⌈‘𝑋) + 1) ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
171, 8, 11, 15, 16ltletrd 10792 . . 3 (𝜑𝑋 < if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
1811ltpnfd 12507 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) < +∞)
192, 4, 11, 17, 18eliood 42178 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞))
20 uzubioo.2 . . 3 𝑍 = (ℤ𝑀)
217, 9ifcld 4470 . . 3 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℤ)
22 max1 12569 . . . 4 ((𝑀 ∈ ℝ ∧ ((⌈‘𝑋) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2310, 8, 22syl2anc 587 . . 3 (𝜑𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀))
2420, 9, 21, 23eluzd 42089 . 2 (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍)
25 eleq1 2877 . . 3 (𝑘 = if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) → (𝑘𝑍 ↔ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍))
2625rspcev 3571 . 2 ((if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞) ∧ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
2719, 24, 26syl2anc 587 1 (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ∃wrex 3107  ifcif 4425   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  ℝcr 10528  1c1 10530   + caddc 10532  +∞cpnf 10664  ℝ*cxr 10666   ≤ cle 10668  ℤcz 11972  ℤ≥cuz 12234  (,)cioo 12729  ⌈cceil 13159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-ioo 12733  df-fl 13160  df-ceil 13161 This theorem is referenced by:  uzubico  42248  uzubioo2  42249
 Copyright terms: Public domain W3C validator