Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzubioo | Structured version Visualization version GIF version |
Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzubioo.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzubioo.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzubioo.3 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
Ref | Expression |
---|---|
uzubioo | ⊢ (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzubioo.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
2 | 1 | rexrd 11009 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
3 | pnfxr 11013 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | 1 | ceilcld 13544 | . . . . . 6 ⊢ (𝜑 → (⌈‘𝑋) ∈ ℤ) |
6 | 1zzd 12334 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
7 | 5, 6 | zaddcld 12412 | . . . . 5 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ∈ ℤ) |
8 | 7 | zred 12408 | . . . 4 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ∈ ℝ) |
9 | uzubioo.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
10 | 9 | zred 12408 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
11 | 8, 10 | ifcld 4510 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℝ) |
12 | 5 | zred 12408 | . . . . 5 ⊢ (𝜑 → (⌈‘𝑋) ∈ ℝ) |
13 | 1 | ceilged 13547 | . . . . 5 ⊢ (𝜑 → 𝑋 ≤ (⌈‘𝑋)) |
14 | 12 | ltp1d 11888 | . . . . 5 ⊢ (𝜑 → (⌈‘𝑋) < ((⌈‘𝑋) + 1)) |
15 | 1, 12, 8, 13, 14 | lelttrd 11116 | . . . 4 ⊢ (𝜑 → 𝑋 < ((⌈‘𝑋) + 1)) |
16 | 10, 8 | max2d 42952 | . . . 4 ⊢ (𝜑 → ((⌈‘𝑋) + 1) ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
17 | 1, 8, 11, 15, 16 | ltletrd 11118 | . . 3 ⊢ (𝜑 → 𝑋 < if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
18 | 11 | ltpnfd 12839 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) < +∞) |
19 | 2, 4, 11, 17, 18 | eliood 42990 | . 2 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞)) |
20 | uzubioo.2 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
21 | 7, 9 | ifcld 4510 | . . 3 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ ℤ) |
22 | max1 12901 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ ((⌈‘𝑋) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) | |
23 | 10, 8, 22 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀)) |
24 | 20, 9, 21, 23 | eluzd 42903 | . 2 ⊢ (𝜑 → if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) |
25 | eleq1 2827 | . . 3 ⊢ (𝑘 = if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) → (𝑘 ∈ 𝑍 ↔ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍)) | |
26 | 25 | rspcev 3560 | . 2 ⊢ ((if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ (𝑋(,)+∞) ∧ if(𝑀 ≤ ((⌈‘𝑋) + 1), ((⌈‘𝑋) + 1), 𝑀) ∈ 𝑍) → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
27 | 19, 24, 26 | syl2anc 583 | 1 ⊢ (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ifcif 4464 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 1c1 10856 + caddc 10858 +∞cpnf 10990 ℝ*cxr 10992 ≤ cle 10994 ℤcz 12302 ℤ≥cuz 12564 (,)cioo 13061 ⌈cceil 13492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-ioo 13065 df-fl 13493 df-ceil 13494 |
This theorem is referenced by: uzubico 43060 uzubioo2 43061 |
Copyright terms: Public domain | W3C validator |