| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trgcgr | Structured version Visualization version GIF version | ||
| Description: Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| trgcgrg.p | ⊢ 𝑃 = (Base‘𝐺) |
| trgcgrg.m | ⊢ − = (dist‘𝐺) |
| trgcgrg.r | ⊢ ∼ = (cgrG‘𝐺) |
| trgcgrg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| trgcgrg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| trgcgrg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| trgcgrg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| trgcgrg.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| trgcgrg.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| trgcgrg.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| trgcgr.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| trgcgr.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| trgcgr.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| Ref | Expression |
|---|---|
| trgcgr | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trgcgr.1 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | |
| 2 | trgcgr.2 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | |
| 3 | trgcgr.3 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) | |
| 4 | trgcgrg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 5 | trgcgrg.m | . . 3 ⊢ − = (dist‘𝐺) | |
| 6 | trgcgrg.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
| 7 | trgcgrg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | trgcgrg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | trgcgrg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | trgcgrg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 11 | trgcgrg.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 12 | trgcgrg.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 13 | trgcgrg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | trgcgrg 28496 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉 ↔ ((𝐴 − 𝐵) = (𝐷 − 𝐸) ∧ (𝐵 − 𝐶) = (𝐸 − 𝐹) ∧ (𝐶 − 𝐴) = (𝐹 − 𝐷)))) |
| 15 | 1, 2, 3, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 〈“cs3 14753 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 cgrGccgrg 28491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgcb 28431 df-trkg 28434 df-cgrg 28492 |
| This theorem is referenced by: tgcgrxfr 28499 cgr3id 28500 cgr3swap12 28504 cgr3swap23 28505 trgcgrcom 28509 cgr3tr 28510 motcgr3 28526 lnext 28548 mirbtwni 28652 mirtrcgr 28664 symquadlem 28670 midexlem 28673 footexALT 28699 footexlem1 28700 footexlem2 28701 trgcopy 28785 cgracgr 28799 cgraswap 28801 cgracom 28803 cgratr 28804 flatcgra 28805 dfcgra2 28811 tgsas 28836 tgasa1 28839 tgsss1 28841 iseqlgd 28849 |
| Copyright terms: Public domain | W3C validator |