| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf2val | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlfval.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| evlfval.o | ⊢ · = (comp‘𝐷) |
| evlfval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| evlf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| evlf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evlf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| evlf2.l | ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) |
| evlf2val.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| evlf2val.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| evlf2val | ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfval.e | . . 3 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | evlfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | evlfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 7 | evlfval.n | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 8 | evlf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 9 | evlf2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
| 10 | evlf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | evlf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | evlf2.l | . . 3 ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlf2 18185 | . 2 ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) |
| 14 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑎 = 𝐴) | |
| 15 | 14 | fveq1d 6862 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → (𝑎‘𝑌) = (𝐴‘𝑌)) |
| 16 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑔 = 𝐾) | |
| 17 | 16 | fveq2d 6864 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑋(2nd ‘𝐹)𝑌)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
| 18 | 15, 17 | oveq12d 7407 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| 19 | evlf2val.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 20 | evlf2val.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 21 | ovexd 7424 | . 2 ⊢ (𝜑 → ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) ∈ V) | |
| 22 | 13, 18, 19, 20, 21 | ovmpod 7543 | 1 ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4597 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Func cfunc 17822 Nat cnat 17912 evalF cevlf 18176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-evlf 18180 |
| This theorem is referenced by: evlfcllem 18188 evlfcl 18189 uncf2 18204 yonedalem3b 18246 |
| Copyright terms: Public domain | W3C validator |