| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf2val | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlfval.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| evlfval.o | ⊢ · = (comp‘𝐷) |
| evlfval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| evlf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| evlf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evlf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| evlf2.l | ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) |
| evlf2val.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| evlf2val.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| evlf2val | ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfval.e | . . 3 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | evlfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | evlfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 7 | evlfval.n | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 8 | evlf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 9 | evlf2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
| 10 | evlf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | evlf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | evlf2.l | . . 3 ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlf2 18142 | . 2 ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) |
| 14 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑎 = 𝐴) | |
| 15 | 14 | fveq1d 6828 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → (𝑎‘𝑌) = (𝐴‘𝑌)) |
| 16 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑔 = 𝐾) | |
| 17 | 16 | fveq2d 6830 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑋(2nd ‘𝐹)𝑌)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
| 18 | 15, 17 | oveq12d 7371 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| 19 | evlf2val.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 20 | evlf2val.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 21 | ovexd 7388 | . 2 ⊢ (𝜑 → ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) ∈ V) | |
| 22 | 13, 18, 19, 20, 21 | ovmpod 7505 | 1 ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Func cfunc 17779 Nat cnat 17869 evalF cevlf 18133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-evlf 18137 |
| This theorem is referenced by: evlfcllem 18145 evlfcl 18146 uncf2 18161 yonedalem3b 18203 |
| Copyright terms: Public domain | W3C validator |