| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf2val | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlfval.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| evlfval.o | ⊢ · = (comp‘𝐷) |
| evlfval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| evlf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| evlf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evlf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| evlf2.l | ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) |
| evlf2val.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| evlf2val.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| evlf2val | ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfval.e | . . 3 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | evlfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | evlfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
| 7 | evlfval.n | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 8 | evlf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 9 | evlf2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
| 10 | evlf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | evlf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | evlf2.l | . . 3 ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlf2 18132 | . 2 ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) |
| 14 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑎 = 𝐴) | |
| 15 | 14 | fveq1d 6833 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → (𝑎‘𝑌) = (𝐴‘𝑌)) |
| 16 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑔 = 𝐾) | |
| 17 | 16 | fveq2d 6835 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑋(2nd ‘𝐹)𝑌)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
| 18 | 15, 17 | oveq12d 7373 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| 19 | evlf2val.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 20 | evlf2val.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 21 | ovexd 7390 | . 2 ⊢ (𝜑 → ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) ∈ V) | |
| 22 | 13, 18, 19, 20, 21 | ovmpod 7507 | 1 ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Basecbs 17127 Hom chom 17179 compcco 17180 Catccat 17578 Func cfunc 17769 Nat cnat 17859 evalF cevlf 18123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-evlf 18127 |
| This theorem is referenced by: evlfcllem 18135 evlfcl 18136 uncf2 18151 yonedalem3b 18193 |
| Copyright terms: Public domain | W3C validator |