Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlf2val | Structured version Visualization version GIF version |
Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
evlfval.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
evlfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
evlfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
evlfval.b | ⊢ 𝐵 = (Base‘𝐶) |
evlfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
evlfval.o | ⊢ · = (comp‘𝐷) |
evlfval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
evlf2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
evlf2.g | ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
evlf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
evlf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evlf2.l | ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) |
evlf2val.a | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
evlf2val.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
evlf2val | ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlfval.e | . . 3 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
2 | evlfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | evlfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | evlfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | evlfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | evlfval.o | . . 3 ⊢ · = (comp‘𝐷) | |
7 | evlfval.n | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
8 | evlf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
9 | evlf2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) | |
10 | evlf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | evlf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | evlf2.l | . . 3 ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlf2 17917 | . 2 ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) |
14 | simprl 767 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑎 = 𝐴) | |
15 | 14 | fveq1d 6770 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → (𝑎‘𝑌) = (𝐴‘𝑌)) |
16 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → 𝑔 = 𝐾) | |
17 | 16 | fveq2d 6772 | . . 3 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑋(2nd ‘𝐹)𝑌)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) |
18 | 15, 17 | oveq12d 7286 | . 2 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑔 = 𝐾)) → ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
19 | evlf2val.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
20 | evlf2val.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
21 | ovexd 7303 | . 2 ⊢ (𝜑 → ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾)) ∈ V) | |
22 | 13, 18, 19, 20, 21 | ovmpod 7416 | 1 ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 Basecbs 16893 Hom chom 16954 compcco 16955 Catccat 17354 Func cfunc 17550 Nat cnat 17638 evalF cevlf 17908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-evlf 17912 |
This theorem is referenced by: evlfcllem 17920 evlfcl 17921 uncf2 17936 yonedalem3b 17978 |
Copyright terms: Public domain | W3C validator |