| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf1 | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlf1.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlf1.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlf1 | ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlf1.e | . . . 4 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlf1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlf1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2729 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 7 | eqid 2729 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | evlfval 18178 | . . 3 ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
| 9 | ovex 7420 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 10 | 4 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 11 | 9, 10 | mpoex 8058 | . . . 4 ⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)) ∈ V |
| 12 | 9, 10 | xpex 7729 | . . . . 5 ⊢ ((𝐶 Func 𝐷) × 𝐵) ∈ V |
| 13 | 12, 12 | mpoex 8058 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔)))) ∈ V |
| 14 | 11, 13 | op1std 7978 | . . 3 ⊢ (𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 15 | 8, 14 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 16 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 17 | 16 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 18 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 19 | 17, 18 | fveq12d 6865 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 20 | evlf1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 21 | evlf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | fvexd 6873 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑋) ∈ V) | |
| 23 | 15, 19, 20, 21, 22 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⦋csb 3862 〈cop 4595 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Func cfunc 17816 Nat cnat 17906 evalF cevlf 18170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-evlf 18174 |
| This theorem is referenced by: evlfcllem 18182 evlfcl 18183 uncf1 18197 yonedalem3a 18235 yonedalem3b 18240 yonedainv 18242 yonffthlem 18243 |
| Copyright terms: Public domain | W3C validator |