MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf1 Structured version   Visualization version   GIF version

Theorem evlf1 17854
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlf1.e 𝐸 = (𝐶 evalF 𝐷)
evlf1.c (𝜑𝐶 ∈ Cat)
evlf1.d (𝜑𝐷 ∈ Cat)
evlf1.b 𝐵 = (Base‘𝐶)
evlf1.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
evlf1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))

Proof of Theorem evlf1
Dummy variables 𝑥 𝑦 𝑓 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf1.e . . . 4 𝐸 = (𝐶 evalF 𝐷)
2 evlf1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 evlf1.d . . . 4 (𝜑𝐷 ∈ Cat)
4 evlf1.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2738 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 17851 . . 3 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 7288 . . . . 5 (𝐶 Func 𝐷) ∈ V
104fvexi 6770 . . . . 5 𝐵 ∈ V
119, 10mpoex 7893 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 7581 . . . . 5 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1312, 12mpoex 7893 . . . 4 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13op1std 7814 . . 3 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
158, 14syl 17 . 2 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
16 simprl 767 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
1716fveq2d 6760 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
18 simprr 769 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
1917, 18fveq12d 6763 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
20 evlf1.f . 2 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
21 evlf1.x . 2 (𝜑𝑋𝐵)
22 fvexd 6771 . 2 (𝜑 → ((1st𝐹)‘𝑋) ∈ V)
2315, 19, 20, 21, 22ovmpod 7403 1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290   Func cfunc 17485   Nat cnat 17573   evalF cevlf 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-evlf 17847
This theorem is referenced by:  evlfcllem  17855  evlfcl  17856  uncf1  17870  yonedalem3a  17908  yonedalem3b  17913  yonedainv  17915  yonffthlem  17916
  Copyright terms: Public domain W3C validator