MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf1 Structured version   Visualization version   GIF version

Theorem evlf1 18188
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlf1.e 𝐸 = (𝐶 evalF 𝐷)
evlf1.c (𝜑𝐶 ∈ Cat)
evlf1.d (𝜑𝐷 ∈ Cat)
evlf1.b 𝐵 = (Base‘𝐶)
evlf1.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
evlf1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))

Proof of Theorem evlf1
Dummy variables 𝑥 𝑦 𝑓 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf1.e . . . 4 𝐸 = (𝐶 evalF 𝐷)
2 evlf1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 evlf1.d . . . 4 (𝜑𝐷 ∈ Cat)
4 evlf1.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2730 . . . 4 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2730 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 18185 . . 3 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 7423 . . . . 5 (𝐶 Func 𝐷) ∈ V
104fvexi 6875 . . . . 5 𝐵 ∈ V
119, 10mpoex 8061 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 7732 . . . . 5 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1312, 12mpoex 8061 . . . 4 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13op1std 7981 . . 3 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
158, 14syl 17 . 2 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
16 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
1716fveq2d 6865 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
18 simprr 772 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
1917, 18fveq12d 6868 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
20 evlf1.f . 2 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
21 evlf1.x . 2 (𝜑𝑋𝐵)
22 fvexd 6876 . 2 (𝜑 → ((1st𝐹)‘𝑋) ∈ V)
2315, 19, 20, 21, 22ovmpod 7544 1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632   Func cfunc 17823   Nat cnat 17913   evalF cevlf 18177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-evlf 18181
This theorem is referenced by:  evlfcllem  18189  evlfcl  18190  uncf1  18204  yonedalem3a  18242  yonedalem3b  18247  yonedainv  18249  yonffthlem  18250
  Copyright terms: Public domain W3C validator