![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlf1 | Structured version Visualization version GIF version |
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
evlf1.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
evlf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
evlf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
evlf1.b | ⊢ 𝐵 = (Base‘𝐶) |
evlf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
evlf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
evlf1 | ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlf1.e | . . . 4 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
2 | evlf1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | evlf1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | evlf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
5 | eqid 2732 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | eqid 2732 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
7 | eqid 2732 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
8 | 1, 2, 3, 4, 5, 6, 7 | evlfval 18166 | . . 3 ⊢ (𝜑 → 𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(⟨((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))⟩(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))⟩) |
9 | ovex 7438 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
10 | 4 | fvexi 6902 | . . . . 5 ⊢ 𝐵 ∈ V |
11 | 9, 10 | mpoex 8062 | . . . 4 ⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)) ∈ V |
12 | 9, 10 | xpex 7736 | . . . . 5 ⊢ ((𝐶 Func 𝐷) × 𝐵) ∈ V |
13 | 12, 12 | mpoex 8062 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(⟨((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))⟩(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔)))) ∈ V |
14 | 11, 13 | op1std 7981 | . . 3 ⊢ (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(⟨((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))⟩(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))⟩ → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
15 | 8, 14 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
16 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
17 | 16 | fveq2d 6892 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
18 | simprr 771 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
19 | 17, 18 | fveq12d 6895 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
20 | evlf1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
21 | evlf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
22 | fvexd 6903 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑋) ∈ V) | |
23 | 15, 19, 20, 21, 22 | ovmpod 7556 | 1 ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⦋csb 3892 ⟨cop 4633 × cxp 5673 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7969 2nd c2nd 7970 Basecbs 17140 Hom chom 17204 compcco 17205 Catccat 17604 Func cfunc 17800 Nat cnat 17888 evalF cevlf 18158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-evlf 18162 |
This theorem is referenced by: evlfcllem 18170 evlfcl 18171 uncf1 18185 yonedalem3a 18223 yonedalem3b 18228 yonedainv 18230 yonffthlem 18231 |
Copyright terms: Public domain | W3C validator |