| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf1 | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlf1.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlf1.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlf1 | ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlf1.e | . . . 4 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlf1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlf1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2731 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 7 | eqid 2731 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | evlfval 18123 | . . 3 ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
| 9 | ovex 7379 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 10 | 4 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 11 | 9, 10 | mpoex 8011 | . . . 4 ⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)) ∈ V |
| 12 | 9, 10 | xpex 7686 | . . . . 5 ⊢ ((𝐶 Func 𝐷) × 𝐵) ∈ V |
| 13 | 12, 12 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔)))) ∈ V |
| 14 | 11, 13 | op1std 7931 | . . 3 ⊢ (𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 15 | 8, 14 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 16 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 17 | 16 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 18 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 19 | 17, 18 | fveq12d 6829 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 20 | evlf1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 21 | evlf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | fvexd 6837 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑋) ∈ V) | |
| 23 | 15, 19, 20, 21, 22 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⦋csb 3845 〈cop 4579 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Func cfunc 17761 Nat cnat 17851 evalF cevlf 18115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-evlf 18119 |
| This theorem is referenced by: evlfcllem 18127 evlfcl 18128 uncf1 18142 yonedalem3a 18180 yonedalem3b 18185 yonedainv 18187 yonffthlem 18188 |
| Copyright terms: Public domain | W3C validator |