| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlf1 | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| evlf1.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
| evlf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| evlf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| evlf1.b | ⊢ 𝐵 = (Base‘𝐶) |
| evlf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| evlf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlf1 | ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlf1.e | . . . 4 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
| 2 | evlf1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | evlf1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 4 | evlf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | eqid 2730 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 7 | eqid 2730 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | evlfval 18185 | . . 3 ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
| 9 | ovex 7423 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 10 | 4 | fvexi 6875 | . . . . 5 ⊢ 𝐵 ∈ V |
| 11 | 9, 10 | mpoex 8061 | . . . 4 ⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)) ∈ V |
| 12 | 9, 10 | xpex 7732 | . . . . 5 ⊢ ((𝐶 Func 𝐷) × 𝐵) ∈ V |
| 13 | 12, 12 | mpoex 8061 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔)))) ∈ V |
| 14 | 11, 13 | op1std 7981 | . . 3 ⊢ (𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 15 | 8, 14 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
| 16 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 17 | 16 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 18 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 19 | 17, 18 | fveq12d 6868 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 20 | evlf1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 21 | evlf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | fvexd 6876 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑋) ∈ V) | |
| 23 | 15, 19, 20, 21, 22 | ovmpod 7544 | 1 ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Func cfunc 17823 Nat cnat 17913 evalF cevlf 18177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-evlf 18181 |
| This theorem is referenced by: evlfcllem 18189 evlfcl 18190 uncf1 18204 yonedalem3a 18242 yonedalem3b 18247 yonedainv 18249 yonffthlem 18250 |
| Copyright terms: Public domain | W3C validator |