MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf2 Structured version   Visualization version   GIF version

Theorem uncf2 18186
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
uncf1.a 𝐴 = (Base‘𝐶)
uncf1.b 𝐵 = (Base‘𝐷)
uncf1.x (𝜑𝑋𝐴)
uncf1.y (𝜑𝑌𝐵)
uncf2.h 𝐻 = (Hom ‘𝐶)
uncf2.j 𝐽 = (Hom ‘𝐷)
uncf2.z (𝜑𝑍𝐴)
uncf2.w (𝜑𝑊𝐵)
uncf2.r (𝜑𝑅 ∈ (𝑋𝐻𝑍))
uncf2.s (𝜑𝑆 ∈ (𝑌𝐽𝑊))
Assertion
Ref Expression
uncf2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))

Proof of Theorem uncf2
StepHypRef Expression
1 uncfval.g . . . . . . 7 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . 7 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . . . . . 7 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 18183 . . . . . 6 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
65fveq2d 6892 . . . . 5 (𝜑 → (2nd𝐹) = (2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))))
76oveqd 7422 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩) = (⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩))
87oveqd 7422 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆))
9 df-ov 7408 . . . 4 (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)
10 eqid 2732 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 uncf1.a . . . . . 6 𝐴 = (Base‘𝐶)
12 uncf1.b . . . . . 6 𝐵 = (Base‘𝐷)
1310, 11, 12xpcbas 18126 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
14 eqid 2732 . . . . . 6 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
15 eqid 2732 . . . . . 6 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
16 funcrcl 17809 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
174, 16syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1817simpld 495 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
19 eqid 2732 . . . . . . . 8 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
2010, 18, 2, 191stfcl 18145 . . . . . . 7 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
2120, 4cofucl 17834 . . . . . 6 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
22 eqid 2732 . . . . . . 7 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
2310, 18, 2, 222ndfcl 18146 . . . . . 6 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
2414, 15, 21, 23prfcl 18151 . . . . 5 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
25 eqid 2732 . . . . . 6 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
26 eqid 2732 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2725, 26, 2, 3evlfcl 18171 . . . . 5 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
28 uncf1.x . . . . . 6 (𝜑𝑋𝐴)
29 uncf1.y . . . . . 6 (𝜑𝑌𝐵)
3028, 29opelxpd 5713 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
31 uncf2.z . . . . . 6 (𝜑𝑍𝐴)
32 uncf2.w . . . . . 6 (𝜑𝑊𝐵)
3331, 32opelxpd 5713 . . . . 5 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
34 eqid 2732 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
35 uncf2.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑍))
36 uncf2.s . . . . . . 7 (𝜑𝑆 ∈ (𝑌𝐽𝑊))
3735, 36opelxpd 5713 . . . . . 6 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
38 uncf2.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
39 uncf2.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
4010, 11, 12, 38, 39, 28, 29, 31, 32, 34xpchom2 18134 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
4137, 40eleqtrrd 2836 . . . . 5 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
4213, 24, 27, 30, 33, 34, 41cofu2 17832 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
439, 42eqtrid 2784 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
448, 43eqtrd 2772 . 2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
4514, 13, 34, 21, 23, 30prf1 18148 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩)
4613, 20, 4, 30cofu1 17830 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)))
4710, 13, 34, 18, 2, 19, 301stf1 18140 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
48 op1stg 7983 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4928, 29, 48syl2anc 584 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
5047, 49eqtrd 2772 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑋)
5150fveq2d 6892 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)) = ((1st𝐺)‘𝑋))
5246, 51eqtrd 2772 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘𝑋))
5310, 13, 34, 18, 2, 22, 302ndf1 18143 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = (2nd ‘⟨𝑋, 𝑌⟩))
54 op2ndg 7984 . . . . . . . . 9 ((𝑋𝐴𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5528, 29, 54syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5653, 55eqtrd 2772 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑌)
5752, 56opeq12d 4880 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩ = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
5845, 57eqtrd 2772 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
5914, 13, 34, 21, 23, 33prf1 18148 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩)
6013, 20, 4, 33cofu1 17830 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)))
6110, 13, 34, 18, 2, 19, 331stf1 18140 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = (1st ‘⟨𝑍, 𝑊⟩))
62 op1stg 7983 . . . . . . . . . . 11 ((𝑍𝐴𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6331, 32, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6461, 63eqtrd 2772 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑍)
6564fveq2d 6892 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = ((1st𝐺)‘𝑍))
6660, 65eqtrd 2772 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘𝑍))
6710, 13, 34, 18, 2, 22, 332ndf1 18143 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = (2nd ‘⟨𝑍, 𝑊⟩))
68 op2ndg 7984 . . . . . . . . 9 ((𝑍𝐴𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
6931, 32, 68syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
7067, 69eqtrd 2772 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑊)
7166, 70opeq12d 4880 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩ = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7259, 71eqtrd 2772 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7358, 72oveq12d 7423 . . . 4 (𝜑 → (((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩)) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩))
7414, 13, 34, 21, 23, 30, 33, 41prf2 18150 . . . . 5 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩)
7513, 20, 4, 30, 33, 34, 41cofu2 17832 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
7650, 64oveq12d 7423 . . . . . . . 8 (𝜑 → (((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = (𝑋(2nd𝐺)𝑍))
7710, 13, 34, 18, 2, 19, 30, 331stf2 18141 . . . . . . . . . 10 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
7877fveq1d 6890 . . . . . . . . 9 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
7941fvresd 6908 . . . . . . . . 9 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (1st ‘⟨𝑅, 𝑆⟩))
80 op1stg 7983 . . . . . . . . . 10 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8135, 36, 80syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8278, 79, 813eqtrd 2776 . . . . . . . 8 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑅)
8376, 82fveq12d 6895 . . . . . . 7 (𝜑 → ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8475, 83eqtrd 2772 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8510, 13, 34, 18, 2, 22, 30, 332ndf2 18144 . . . . . . . 8 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩) = (2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
8685fveq1d 6890 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
8741fvresd 6908 . . . . . . 7 (𝜑 → ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (2nd ‘⟨𝑅, 𝑆⟩))
88 op2ndg 7984 . . . . . . . 8 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
8935, 36, 88syl2anc 584 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
9086, 87, 893eqtrd 2776 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑆)
9184, 90opeq12d 4880 . . . . 5 (𝜑 → ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩ = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9274, 91eqtrd 2772 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9373, 92fveq12d 6895 . . 3 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩))
94 df-ov 7408 . . 3 (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9593, 94eqtr4di 2790 . 2 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆))
96 eqid 2732 . . 3 (comp‘𝐸) = (comp‘𝐸)
97 eqid 2732 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
9826fucbas 17908 . . . . 5 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
99 relfunc 17808 . . . . . 6 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
100 1st2ndbr 8024 . . . . . 6 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
10199, 4, 100sylancr 587 . . . . 5 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
10211, 98, 101funcf1 17812 . . . 4 (𝜑 → (1st𝐺):𝐴⟶(𝐷 Func 𝐸))
103102, 28ffvelcdmd 7084 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
104102, 31ffvelcdmd 7084 . . 3 (𝜑 → ((1st𝐺)‘𝑍) ∈ (𝐷 Func 𝐸))
105 eqid 2732 . . 3 (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)
10626, 97fuchom 17909 . . . . 5 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10711, 38, 106, 101, 28, 31funcf2 17814 . . . 4 (𝜑 → (𝑋(2nd𝐺)𝑍):(𝑋𝐻𝑍)⟶(((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
108107, 35ffvelcdmd 7084 . . 3 (𝜑 → ((𝑋(2nd𝐺)𝑍)‘𝑅) ∈ (((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
10925, 2, 3, 12, 39, 96, 97, 103, 104, 29, 32, 105, 108, 36evlf2val 18168 . 2 (𝜑 → (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
11044, 95, 1093eqtrd 2776 1 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4633   class class class wbr 5147   × cxp 5673  cres 5677  Rel wrel 5680  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  ⟨“cs3 14789  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604   Func cfunc 17800  func ccofu 17802   Nat cnat 17888   FuncCat cfuc 17889   ×c cxpc 18116   1stF c1stf 18117   2ndF c2ndf 18118   ⟨,⟩F cprf 18119   evalF cevlf 18158   uncurryF cuncf 18160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-func 17804  df-cofu 17806  df-nat 17890  df-fuc 17891  df-xpc 18120  df-1stf 18121  df-2ndf 18122  df-prf 18123  df-evlf 18162  df-uncf 18164
This theorem is referenced by:  curfuncf  18187  uncfcurf  18188
  Copyright terms: Public domain W3C validator