MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf2 Structured version   Visualization version   GIF version

Theorem uncf2 18282
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
uncf1.a 𝐴 = (Base‘𝐶)
uncf1.b 𝐵 = (Base‘𝐷)
uncf1.x (𝜑𝑋𝐴)
uncf1.y (𝜑𝑌𝐵)
uncf2.h 𝐻 = (Hom ‘𝐶)
uncf2.j 𝐽 = (Hom ‘𝐷)
uncf2.z (𝜑𝑍𝐴)
uncf2.w (𝜑𝑊𝐵)
uncf2.r (𝜑𝑅 ∈ (𝑋𝐻𝑍))
uncf2.s (𝜑𝑆 ∈ (𝑌𝐽𝑊))
Assertion
Ref Expression
uncf2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))

Proof of Theorem uncf2
StepHypRef Expression
1 uncfval.g . . . . . . 7 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . 7 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . . . . . 7 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 18279 . . . . . 6 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
65fveq2d 6910 . . . . 5 (𝜑 → (2nd𝐹) = (2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))))
76oveqd 7448 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩) = (⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩))
87oveqd 7448 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆))
9 df-ov 7434 . . . 4 (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)
10 eqid 2737 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 uncf1.a . . . . . 6 𝐴 = (Base‘𝐶)
12 uncf1.b . . . . . 6 𝐵 = (Base‘𝐷)
1310, 11, 12xpcbas 18223 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
14 eqid 2737 . . . . . 6 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
15 eqid 2737 . . . . . 6 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
16 funcrcl 17908 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
174, 16syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1817simpld 494 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
19 eqid 2737 . . . . . . . 8 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
2010, 18, 2, 191stfcl 18242 . . . . . . 7 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
2120, 4cofucl 17933 . . . . . 6 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
22 eqid 2737 . . . . . . 7 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
2310, 18, 2, 222ndfcl 18243 . . . . . 6 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
2414, 15, 21, 23prfcl 18248 . . . . 5 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
25 eqid 2737 . . . . . 6 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
26 eqid 2737 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2725, 26, 2, 3evlfcl 18267 . . . . 5 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
28 uncf1.x . . . . . 6 (𝜑𝑋𝐴)
29 uncf1.y . . . . . 6 (𝜑𝑌𝐵)
3028, 29opelxpd 5724 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
31 uncf2.z . . . . . 6 (𝜑𝑍𝐴)
32 uncf2.w . . . . . 6 (𝜑𝑊𝐵)
3331, 32opelxpd 5724 . . . . 5 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
34 eqid 2737 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
35 uncf2.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑍))
36 uncf2.s . . . . . . 7 (𝜑𝑆 ∈ (𝑌𝐽𝑊))
3735, 36opelxpd 5724 . . . . . 6 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
38 uncf2.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
39 uncf2.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
4010, 11, 12, 38, 39, 28, 29, 31, 32, 34xpchom2 18231 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
4137, 40eleqtrrd 2844 . . . . 5 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
4213, 24, 27, 30, 33, 34, 41cofu2 17931 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
439, 42eqtrid 2789 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
448, 43eqtrd 2777 . 2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
4514, 13, 34, 21, 23, 30prf1 18245 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩)
4613, 20, 4, 30cofu1 17929 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)))
4710, 13, 34, 18, 2, 19, 301stf1 18237 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
48 op1stg 8026 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4928, 29, 48syl2anc 584 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
5047, 49eqtrd 2777 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑋)
5150fveq2d 6910 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)) = ((1st𝐺)‘𝑋))
5246, 51eqtrd 2777 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘𝑋))
5310, 13, 34, 18, 2, 22, 302ndf1 18240 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = (2nd ‘⟨𝑋, 𝑌⟩))
54 op2ndg 8027 . . . . . . . . 9 ((𝑋𝐴𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5528, 29, 54syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5653, 55eqtrd 2777 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑌)
5752, 56opeq12d 4881 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩ = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
5845, 57eqtrd 2777 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
5914, 13, 34, 21, 23, 33prf1 18245 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩)
6013, 20, 4, 33cofu1 17929 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)))
6110, 13, 34, 18, 2, 19, 331stf1 18237 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = (1st ‘⟨𝑍, 𝑊⟩))
62 op1stg 8026 . . . . . . . . . . 11 ((𝑍𝐴𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6331, 32, 62syl2anc 584 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6461, 63eqtrd 2777 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑍)
6564fveq2d 6910 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = ((1st𝐺)‘𝑍))
6660, 65eqtrd 2777 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘𝑍))
6710, 13, 34, 18, 2, 22, 332ndf1 18240 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = (2nd ‘⟨𝑍, 𝑊⟩))
68 op2ndg 8027 . . . . . . . . 9 ((𝑍𝐴𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
6931, 32, 68syl2anc 584 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
7067, 69eqtrd 2777 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑊)
7166, 70opeq12d 4881 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩ = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7259, 71eqtrd 2777 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7358, 72oveq12d 7449 . . . 4 (𝜑 → (((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩)) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩))
7414, 13, 34, 21, 23, 30, 33, 41prf2 18247 . . . . 5 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩)
7513, 20, 4, 30, 33, 34, 41cofu2 17931 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
7650, 64oveq12d 7449 . . . . . . . 8 (𝜑 → (((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = (𝑋(2nd𝐺)𝑍))
7710, 13, 34, 18, 2, 19, 30, 331stf2 18238 . . . . . . . . . 10 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
7877fveq1d 6908 . . . . . . . . 9 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
7941fvresd 6926 . . . . . . . . 9 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (1st ‘⟨𝑅, 𝑆⟩))
80 op1stg 8026 . . . . . . . . . 10 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8135, 36, 80syl2anc 584 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8278, 79, 813eqtrd 2781 . . . . . . . 8 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑅)
8376, 82fveq12d 6913 . . . . . . 7 (𝜑 → ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8475, 83eqtrd 2777 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8510, 13, 34, 18, 2, 22, 30, 332ndf2 18241 . . . . . . . 8 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩) = (2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
8685fveq1d 6908 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
8741fvresd 6926 . . . . . . 7 (𝜑 → ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (2nd ‘⟨𝑅, 𝑆⟩))
88 op2ndg 8027 . . . . . . . 8 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
8935, 36, 88syl2anc 584 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
9086, 87, 893eqtrd 2781 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑆)
9184, 90opeq12d 4881 . . . . 5 (𝜑 → ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩ = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9274, 91eqtrd 2777 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9373, 92fveq12d 6913 . . 3 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩))
94 df-ov 7434 . . 3 (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9593, 94eqtr4di 2795 . 2 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆))
96 eqid 2737 . . 3 (comp‘𝐸) = (comp‘𝐸)
97 eqid 2737 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
9826fucbas 18008 . . . . 5 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
99 relfunc 17907 . . . . . 6 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
100 1st2ndbr 8067 . . . . . 6 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
10199, 4, 100sylancr 587 . . . . 5 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
10211, 98, 101funcf1 17911 . . . 4 (𝜑 → (1st𝐺):𝐴⟶(𝐷 Func 𝐸))
103102, 28ffvelcdmd 7105 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
104102, 31ffvelcdmd 7105 . . 3 (𝜑 → ((1st𝐺)‘𝑍) ∈ (𝐷 Func 𝐸))
105 eqid 2737 . . 3 (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)
10626, 97fuchom 18009 . . . . 5 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
10711, 38, 106, 101, 28, 31funcf2 17913 . . . 4 (𝜑 → (𝑋(2nd𝐺)𝑍):(𝑋𝐻𝑍)⟶(((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
108107, 35ffvelcdmd 7105 . . 3 (𝜑 → ((𝑋(2nd𝐺)𝑍)‘𝑅) ∈ (((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
10925, 2, 3, 12, 39, 96, 97, 103, 104, 29, 32, 105, 108, 36evlf2val 18264 . 2 (𝜑 → (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
11044, 95, 1093eqtrd 2781 1 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143   × cxp 5683  cres 5687  Rel wrel 5690  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  ⟨“cs3 14881  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707   Func cfunc 17899  func ccofu 17901   Nat cnat 17989   FuncCat cfuc 17990   ×c cxpc 18213   1stF c1stf 18214   2ndF c2ndf 18215   ⟨,⟩F cprf 18216   evalF cevlf 18254   uncurryF cuncf 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-hom 17321  df-cco 17322  df-cat 17711  df-cid 17712  df-func 17903  df-cofu 17905  df-nat 17991  df-fuc 17992  df-xpc 18217  df-1stf 18218  df-2ndf 18219  df-prf 18220  df-evlf 18258  df-uncf 18260
This theorem is referenced by:  curfuncf  18283  uncfcurf  18284
  Copyright terms: Public domain W3C validator