Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlrhm | Structured version Visualization version GIF version |
Description: The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
evlrhm.w | ⊢ 𝑊 = (𝐼 mPoly 𝑅) |
evlrhm.t | ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlrhm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19776 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
3 | evlval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 3 | subrgid 20007 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝐵 ∈ (SubRing‘𝑅)) |
6 | evlval.q | . . . . 5 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
7 | 6, 3 | evlval 21286 | . . . 4 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
8 | eqid 2739 | . . . 4 ⊢ (𝐼 mPoly (𝑅 ↾s 𝐵)) = (𝐼 mPoly (𝑅 ↾s 𝐵)) | |
9 | eqid 2739 | . . . 4 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
10 | evlrhm.t | . . . 4 ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑m 𝐼)) | |
11 | 7, 8, 9, 10, 3 | evlsrhm 21279 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)) → 𝑄 ∈ ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇)) |
12 | 5, 11 | mpd3an3 1460 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇)) |
13 | 3 | ressid 16935 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝑅 ↾s 𝐵) = 𝑅) |
15 | 14 | oveq2d 7284 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝐼 mPoly (𝑅 ↾s 𝐵)) = (𝐼 mPoly 𝑅)) |
16 | evlrhm.w | . . . 4 ⊢ 𝑊 = (𝐼 mPoly 𝑅) | |
17 | 15, 16 | eqtr4di 2797 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝐼 mPoly (𝑅 ↾s 𝐵)) = 𝑊) |
18 | 17 | oveq1d 7283 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇) = (𝑊 RingHom 𝑇)) |
19 | 12, 18 | eleqtrd 2842 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Basecbs 16893 ↾s cress 16922 ↑s cpws 17138 Ringcrg 19764 CRingccrg 19765 RingHom crh 19937 SubRingcsubrg 20001 mPoly cmpl 21090 eval cevl 21262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-gsum 17134 df-prds 17139 df-pws 17141 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-srg 19723 df-ring 19766 df-cring 19767 df-rnghom 19940 df-subrg 20003 df-lmod 20106 df-lss 20175 df-lsp 20215 df-assa 21041 df-asp 21042 df-ascl 21043 df-psr 21093 df-mvr 21094 df-mpl 21095 df-evls 21263 df-evl 21264 |
This theorem is referenced by: evl1val 21476 evl1rhm 21479 mpfpf1 21498 pf1mpf 21499 |
Copyright terms: Public domain | W3C validator |