![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlrhm | Structured version Visualization version GIF version |
Description: The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evlval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
evlval.b | ⊢ 𝐵 = (Base‘𝑅) |
evlrhm.w | ⊢ 𝑊 = (𝐼 mPoly 𝑅) |
evlrhm.t | ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑𝑚 𝐼)) |
Ref | Expression |
---|---|
evlrhm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 18949 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | adantl 475 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
3 | evlval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 3 | subrgid 19178 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝐵 ∈ (SubRing‘𝑅)) |
6 | evlval.q | . . . . 5 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
7 | 6, 3 | evlval 19924 | . . . 4 ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) |
8 | eqid 2778 | . . . 4 ⊢ (𝐼 mPoly (𝑅 ↾s 𝐵)) = (𝐼 mPoly (𝑅 ↾s 𝐵)) | |
9 | eqid 2778 | . . . 4 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
10 | evlrhm.t | . . . 4 ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑𝑚 𝐼)) | |
11 | 7, 8, 9, 10, 3 | evlsrhm 19921 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)) → 𝑄 ∈ ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇)) |
12 | 5, 11 | mpd3an3 1535 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇)) |
13 | 3 | ressid 16335 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
14 | 13 | adantl 475 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝑅 ↾s 𝐵) = 𝑅) |
15 | 14 | oveq2d 6940 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝐼 mPoly (𝑅 ↾s 𝐵)) = (𝐼 mPoly 𝑅)) |
16 | evlrhm.w | . . . 4 ⊢ 𝑊 = (𝐼 mPoly 𝑅) | |
17 | 15, 16 | syl6eqr 2832 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝐼 mPoly (𝑅 ↾s 𝐵)) = 𝑊) |
18 | 17 | oveq1d 6939 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → ((𝐼 mPoly (𝑅 ↾s 𝐵)) RingHom 𝑇) = (𝑊 RingHom 𝑇)) |
19 | 12, 18 | eleqtrd 2861 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6137 (class class class)co 6924 ↑𝑚 cmap 8142 Basecbs 16259 ↾s cress 16260 ↑s cpws 16497 Ringcrg 18938 CRingccrg 18939 RingHom crh 19105 SubRingcsubrg 19172 mPoly cmpl 19754 eval cevl 19905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-ofr 7177 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-sup 8638 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-fz 12648 df-fzo 12789 df-seq 13124 df-hash 13440 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-hom 16366 df-cco 16367 df-0g 16492 df-gsum 16493 df-prds 16498 df-pws 16500 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-mhm 17725 df-submnd 17726 df-grp 17816 df-minusg 17817 df-sbg 17818 df-mulg 17932 df-subg 17979 df-ghm 18046 df-cntz 18137 df-cmn 18585 df-abl 18586 df-mgp 18881 df-ur 18893 df-srg 18897 df-ring 18940 df-cring 18941 df-rnghom 19108 df-subrg 19174 df-lmod 19261 df-lss 19329 df-lsp 19371 df-assa 19713 df-asp 19714 df-ascl 19715 df-psr 19757 df-mvr 19758 df-mpl 19759 df-evls 19906 df-evl 19907 |
This theorem is referenced by: evl1val 20093 evl1rhm 20096 mpfpf1 20115 pf1mpf 20116 |
Copyright terms: Public domain | W3C validator |