Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlsscasrng | Structured version Visualization version GIF version |
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.) |
Ref | Expression |
---|---|
evlsscasrng.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsscasrng.o | ⊢ 𝑂 = (𝐼 eval 𝑆) |
evlsscasrng.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlsscasrng.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsscasrng.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
evlsscasrng.b | ⊢ 𝐵 = (Base‘𝑆) |
evlsscasrng.a | ⊢ 𝐴 = (algSc‘𝑊) |
evlsscasrng.c | ⊢ 𝐶 = (algSc‘𝑃) |
evlsscasrng.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsscasrng.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsscasrng.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsscasrng.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
evlsscasrng | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsscasrng.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑃) | |
2 | evlsscasrng.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
3 | evlsscasrng.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
4 | evlsscasrng.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑆) | |
5 | 4 | ressid 16880 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐵) = 𝑆) |
6 | 5 | eqcomd 2744 | . . . . . . . . . 10 ⊢ (𝑆 ∈ CRing → 𝑆 = (𝑆 ↾s 𝐵)) |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐵)) |
8 | 7 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 mPoly 𝑆) = (𝐼 mPoly (𝑆 ↾s 𝐵))) |
9 | 2, 8 | eqtrid 2790 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐼 mPoly (𝑆 ↾s 𝐵))) |
10 | 9 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (algSc‘𝑃) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))) |
11 | 1, 10 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → 𝐶 = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))) |
12 | 11 | fveq1d 6758 | . . . 4 ⊢ (𝜑 → (𝐶‘𝑋) = ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) |
13 | 12 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋))) |
14 | eqid 2738 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵) | |
15 | eqid 2738 | . . . 4 ⊢ (𝐼 mPoly (𝑆 ↾s 𝐵)) = (𝐼 mPoly (𝑆 ↾s 𝐵)) | |
16 | eqid 2738 | . . . 4 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
17 | eqid 2738 | . . . 4 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) | |
18 | evlsscasrng.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
19 | crngring 19710 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
20 | 4 | subrgid 19941 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆)) |
21 | 3, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
22 | evlsscasrng.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
23 | 4 | subrgss 19940 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
25 | evlsscasrng.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
26 | 24, 25 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
27 | 14, 15, 16, 4, 17, 18, 3, 21, 26 | evlssca 21209 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
28 | 13, 27 | eqtrd 2778 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
29 | evlsscasrng.o | . . . . 5 ⊢ 𝑂 = (𝐼 eval 𝑆) | |
30 | 29, 4 | evlval 21215 | . . . 4 ⊢ 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵) |
31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵)) |
32 | 31 | fveq1d 6758 | . 2 ⊢ (𝜑 → (𝑂‘(𝐶‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋))) |
33 | evlsscasrng.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
34 | evlsscasrng.w | . . 3 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
35 | evlsscasrng.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
36 | evlsscasrng.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
37 | 33, 34, 35, 4, 36, 18, 3, 22, 25 | evlssca 21209 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
38 | 28, 32, 37 | 3eqtr4rd 2789 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 Ringcrg 19698 CRingccrg 19699 SubRingcsubrg 19935 algSccascl 20969 mPoly cmpl 21019 evalSub ces 21190 eval cevl 21191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-evls 21192 df-evl 21193 |
This theorem is referenced by: evlsca 21218 |
Copyright terms: Public domain | W3C validator |