Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlsscasrng | Structured version Visualization version GIF version |
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.) |
Ref | Expression |
---|---|
evlsscasrng.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsscasrng.o | ⊢ 𝑂 = (𝐼 eval 𝑆) |
evlsscasrng.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlsscasrng.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsscasrng.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
evlsscasrng.b | ⊢ 𝐵 = (Base‘𝑆) |
evlsscasrng.a | ⊢ 𝐴 = (algSc‘𝑊) |
evlsscasrng.c | ⊢ 𝐶 = (algSc‘𝑃) |
evlsscasrng.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsscasrng.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsscasrng.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsscasrng.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
evlsscasrng | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsscasrng.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑃) | |
2 | evlsscasrng.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
3 | evlsscasrng.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
4 | evlsscasrng.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑆) | |
5 | 4 | ressid 16665 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐵) = 𝑆) |
6 | 5 | eqcomd 2745 | . . . . . . . . . 10 ⊢ (𝑆 ∈ CRing → 𝑆 = (𝑆 ↾s 𝐵)) |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐵)) |
8 | 7 | oveq2d 7189 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 mPoly 𝑆) = (𝐼 mPoly (𝑆 ↾s 𝐵))) |
9 | 2, 8 | syl5eq 2786 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐼 mPoly (𝑆 ↾s 𝐵))) |
10 | 9 | fveq2d 6681 | . . . . . 6 ⊢ (𝜑 → (algSc‘𝑃) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))) |
11 | 1, 10 | syl5eq 2786 | . . . . 5 ⊢ (𝜑 → 𝐶 = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))) |
12 | 11 | fveq1d 6679 | . . . 4 ⊢ (𝜑 → (𝐶‘𝑋) = ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) |
13 | 12 | fveq2d 6681 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋))) |
14 | eqid 2739 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵) | |
15 | eqid 2739 | . . . 4 ⊢ (𝐼 mPoly (𝑆 ↾s 𝐵)) = (𝐼 mPoly (𝑆 ↾s 𝐵)) | |
16 | eqid 2739 | . . . 4 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
17 | eqid 2739 | . . . 4 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) | |
18 | evlsscasrng.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
19 | crngring 19431 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
20 | 4 | subrgid 19659 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆)) |
21 | 3, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
22 | evlsscasrng.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
23 | 4 | subrgss 19658 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
25 | evlsscasrng.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
26 | 24, 25 | sseldd 3879 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
27 | 14, 15, 16, 4, 17, 18, 3, 21, 26 | evlssca 20906 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
28 | 13, 27 | eqtrd 2774 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
29 | evlsscasrng.o | . . . . 5 ⊢ 𝑂 = (𝐼 eval 𝑆) | |
30 | 29, 4 | evlval 20912 | . . . 4 ⊢ 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵) |
31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵)) |
32 | 31 | fveq1d 6679 | . 2 ⊢ (𝜑 → (𝑂‘(𝐶‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘(𝐶‘𝑋))) |
33 | evlsscasrng.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
34 | evlsscasrng.w | . . 3 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
35 | evlsscasrng.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
36 | evlsscasrng.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
37 | 33, 34, 35, 4, 36, 18, 3, 22, 25 | evlssca 20906 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
38 | 28, 32, 37 | 3eqtr4rd 2785 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ⊆ wss 3844 {csn 4517 × cxp 5524 ‘cfv 6340 (class class class)co 7173 ↑m cmap 8440 Basecbs 16589 ↾s cress 16590 Ringcrg 19419 CRingccrg 19420 SubRingcsubrg 19653 algSccascl 20671 mPoly cmpl 20722 evalSub ces 20887 eval cevl 20888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-ofr 7429 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-map 8442 df-pm 8443 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fsupp 8910 df-sup 8982 df-oi 9050 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-fz 12985 df-fzo 13128 df-seq 13464 df-hash 13786 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-hom 16695 df-cco 16696 df-0g 16821 df-gsum 16822 df-prds 16827 df-pws 16829 df-mre 16963 df-mrc 16964 df-acs 16966 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-mhm 18075 df-submnd 18076 df-grp 18225 df-minusg 18226 df-sbg 18227 df-mulg 18346 df-subg 18397 df-ghm 18477 df-cntz 18568 df-cmn 19029 df-abl 19030 df-mgp 19362 df-ur 19374 df-srg 19378 df-ring 19421 df-cring 19422 df-rnghom 19592 df-subrg 19655 df-lmod 19758 df-lss 19826 df-lsp 19866 df-assa 20672 df-asp 20673 df-ascl 20674 df-psr 20725 df-mvr 20726 df-mpl 20727 df-evls 20889 df-evl 20890 |
This theorem is referenced by: evlsca 20915 |
Copyright terms: Public domain | W3C validator |