Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsevl Structured version   Visualization version   GIF version

Theorem evlsevl 42554
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
evlsevl.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsevl.o 𝑂 = (𝐼 eval 𝑆)
evlsevl.w 𝑊 = (𝐼 mPoly 𝑈)
evlsevl.u 𝑈 = (𝑆s 𝑅)
evlsevl.b 𝐵 = (Base‘𝑊)
evlsevl.i (𝜑𝐼𝑉)
evlsevl.s (𝜑𝑆 ∈ CRing)
evlsevl.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsevl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
evlsevl (𝜑 → (𝑄𝐹) = (𝑂𝐹))

Proof of Theorem evlsevl
Dummy variables 𝑏 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
2 sneq 4587 . . . . . . . 8 (𝑥 = (𝐹𝑏) → {𝑥} = {(𝐹𝑏)})
32xpeq2d 5649 . . . . . . 7 (𝑥 = (𝐹𝑏) → (((Base‘𝑆) ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
4 evlsevl.w . . . . . . . . . 10 𝑊 = (𝐼 mPoly 𝑈)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
6 evlsevl.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
7 eqid 2729 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 evlsevl.f . . . . . . . . . 10 (𝜑𝐹𝐵)
94, 5, 6, 7, 8mplelf 21905 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
109ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑈))
11 evlsevl.r . . . . . . . . . 10 (𝜑𝑅 ∈ (SubRing‘𝑆))
12 evlsevl.u . . . . . . . . . . 11 𝑈 = (𝑆s 𝑅)
1312subrgbas 20466 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
1411, 13syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
1514adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 = (Base‘𝑈))
1610, 15eleqtrrd 2831 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ 𝑅)
17 ovexd 7384 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((Base‘𝑆) ↑m 𝐼) ∈ V)
18 snex 5375 . . . . . . . . 9 {(𝐹𝑏)} ∈ V
1918a1i 11 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝐹𝑏)} ∈ V)
2017, 19xpexd 7687 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}) ∈ V)
211, 3, 16, 20fvmptd3 6953 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
22 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
23 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2423subrgss 20457 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆))
2511, 24syl 17 . . . . . . . . 9 (𝜑𝑅 ⊆ (Base‘𝑆))
2625adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ⊆ (Base‘𝑆))
2726, 16sseldd 3936 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑆))
2822, 3, 27, 20fvmptd3 6953 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
2921, 28eqtr4d 2767 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)))
3029oveq1d 7364 . . . 4 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))) = (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))
3130mpteq2dva 5185 . . 3 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))))
3231oveq2d 7365 . 2 (𝜑 → ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
33 evlsevl.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
34 eqid 2729 . . 3 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
35 eqid 2729 . . 3 (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
36 eqid 2729 . . 3 (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
37 eqid 2729 . . 3 (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
38 eqid 2729 . . 3 (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))) = (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))
39 evlsevl.i . . 3 (𝜑𝐼𝑉)
40 evlsevl.s . . 3 (𝜑𝑆 ∈ CRing)
4133, 4, 6, 7, 23, 12, 34, 35, 36, 37, 1, 38, 39, 40, 11, 8evlsvval 42543 . 2 (𝜑 → (𝑄𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
42 evlsevl.o . . . . 5 𝑂 = (𝐼 eval 𝑆)
4342, 23evlval 22000 . . . 4 𝑂 = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
4443fveq1i 6823 . . 3 (𝑂𝐹) = (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹)
45 eqid 2729 . . . 4 ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
46 eqid 2729 . . . 4 (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly (𝑆s (Base‘𝑆)))
47 eqid 2729 . . . 4 (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆))))
48 eqid 2729 . . . 4 (𝑆s (Base‘𝑆)) = (𝑆s (Base‘𝑆))
4940crngringd 20131 . . . . 5 (𝜑𝑆 ∈ Ring)
5023subrgid 20458 . . . . 5 (𝑆 ∈ Ring → (Base‘𝑆) ∈ (SubRing‘𝑆))
5149, 50syl 17 . . . 4 (𝜑 → (Base‘𝑆) ∈ (SubRing‘𝑆))
52 eqid 2729 . . . . . 6 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
53 eqid 2729 . . . . . 6 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
544, 12, 6, 52, 53, 39, 11, 8mplsubrgcl 42531 . . . . 5 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑆)))
5523ressid 17155 . . . . . . . 8 (𝑆 ∈ CRing → (𝑆s (Base‘𝑆)) = 𝑆)
5640, 55syl 17 . . . . . . 7 (𝜑 → (𝑆s (Base‘𝑆)) = 𝑆)
5756oveq2d 7365 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly 𝑆))
5857fveq2d 6826 . . . . 5 (𝜑 → (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly 𝑆)))
5954, 58eleqtrrd 2831 . . . 4 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))))
6045, 46, 47, 7, 23, 48, 34, 35, 36, 37, 22, 38, 39, 40, 51, 59evlsvval 42543 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6144, 60eqtrid 2776 . 2 (𝜑 → (𝑂𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6232, 41, 613eqtr4d 2774 1 (𝜑 → (𝑄𝐹) = (𝑂𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  wss 3903  {csn 4577  cmpt 5173   × cxp 5617  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  f cof 7611  m cmap 8753  Fincfn 8872  cn 12128  0cn0 12384  Basecbs 17120  s cress 17141  .rcmulr 17162   Σg cgsu 17344  s cpws 17350  .gcmg 18946  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  SubRingcsubrg 20454   mPoly cmpl 21813   evalSub ces 21977   eval cevl 21978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-evls 21979  df-evl 21980
This theorem is referenced by:  evlvvval  42556  selvval2  42567
  Copyright terms: Public domain W3C validator