Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsevl Structured version   Visualization version   GIF version

Theorem evlsevl 42566
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
evlsevl.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsevl.o 𝑂 = (𝐼 eval 𝑆)
evlsevl.w 𝑊 = (𝐼 mPoly 𝑈)
evlsevl.u 𝑈 = (𝑆s 𝑅)
evlsevl.b 𝐵 = (Base‘𝑊)
evlsevl.i (𝜑𝐼𝑉)
evlsevl.s (𝜑𝑆 ∈ CRing)
evlsevl.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsevl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
evlsevl (𝜑 → (𝑄𝐹) = (𝑂𝐹))

Proof of Theorem evlsevl
Dummy variables 𝑏 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . 7 (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
2 sneq 4602 . . . . . . . 8 (𝑥 = (𝐹𝑏) → {𝑥} = {(𝐹𝑏)})
32xpeq2d 5671 . . . . . . 7 (𝑥 = (𝐹𝑏) → (((Base‘𝑆) ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
4 evlsevl.w . . . . . . . . . 10 𝑊 = (𝐼 mPoly 𝑈)
5 eqid 2730 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
6 evlsevl.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
7 eqid 2730 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 evlsevl.f . . . . . . . . . 10 (𝜑𝐹𝐵)
94, 5, 6, 7, 8mplelf 21914 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
109ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑈))
11 evlsevl.r . . . . . . . . . 10 (𝜑𝑅 ∈ (SubRing‘𝑆))
12 evlsevl.u . . . . . . . . . . 11 𝑈 = (𝑆s 𝑅)
1312subrgbas 20497 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
1411, 13syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
1514adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 = (Base‘𝑈))
1610, 15eleqtrrd 2832 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ 𝑅)
17 ovexd 7425 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((Base‘𝑆) ↑m 𝐼) ∈ V)
18 snex 5394 . . . . . . . . 9 {(𝐹𝑏)} ∈ V
1918a1i 11 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝐹𝑏)} ∈ V)
2017, 19xpexd 7730 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}) ∈ V)
211, 3, 16, 20fvmptd3 6994 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
22 eqid 2730 . . . . . . 7 (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
23 eqid 2730 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2423subrgss 20488 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆))
2511, 24syl 17 . . . . . . . . 9 (𝜑𝑅 ⊆ (Base‘𝑆))
2625adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ⊆ (Base‘𝑆))
2726, 16sseldd 3950 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑆))
2822, 3, 27, 20fvmptd3 6994 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
2921, 28eqtr4d 2768 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)))
3029oveq1d 7405 . . . 4 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))) = (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))
3130mpteq2dva 5203 . . 3 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))))
3231oveq2d 7406 . 2 (𝜑 → ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
33 evlsevl.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
34 eqid 2730 . . 3 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
35 eqid 2730 . . 3 (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
36 eqid 2730 . . 3 (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
37 eqid 2730 . . 3 (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
38 eqid 2730 . . 3 (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))) = (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))
39 evlsevl.i . . 3 (𝜑𝐼𝑉)
40 evlsevl.s . . 3 (𝜑𝑆 ∈ CRing)
4133, 4, 6, 7, 23, 12, 34, 35, 36, 37, 1, 38, 39, 40, 11, 8evlsvval 42555 . 2 (𝜑 → (𝑄𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
42 evlsevl.o . . . . 5 𝑂 = (𝐼 eval 𝑆)
4342, 23evlval 22009 . . . 4 𝑂 = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
4443fveq1i 6862 . . 3 (𝑂𝐹) = (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹)
45 eqid 2730 . . . 4 ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
46 eqid 2730 . . . 4 (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly (𝑆s (Base‘𝑆)))
47 eqid 2730 . . . 4 (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆))))
48 eqid 2730 . . . 4 (𝑆s (Base‘𝑆)) = (𝑆s (Base‘𝑆))
4940crngringd 20162 . . . . 5 (𝜑𝑆 ∈ Ring)
5023subrgid 20489 . . . . 5 (𝑆 ∈ Ring → (Base‘𝑆) ∈ (SubRing‘𝑆))
5149, 50syl 17 . . . 4 (𝜑 → (Base‘𝑆) ∈ (SubRing‘𝑆))
52 eqid 2730 . . . . . 6 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
53 eqid 2730 . . . . . 6 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
544, 12, 6, 52, 53, 39, 11, 8mplsubrgcl 42543 . . . . 5 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑆)))
5523ressid 17221 . . . . . . . 8 (𝑆 ∈ CRing → (𝑆s (Base‘𝑆)) = 𝑆)
5640, 55syl 17 . . . . . . 7 (𝜑 → (𝑆s (Base‘𝑆)) = 𝑆)
5756oveq2d 7406 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly 𝑆))
5857fveq2d 6865 . . . . 5 (𝜑 → (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly 𝑆)))
5954, 58eleqtrrd 2832 . . . 4 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))))
6045, 46, 47, 7, 23, 48, 34, 35, 36, 37, 22, 38, 39, 40, 51, 59evlsvval 42555 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6144, 60eqtrid 2777 . 2 (𝜑 → (𝑂𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6232, 41, 613eqtr4d 2775 1 (𝜑 → (𝑄𝐹) = (𝑂𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  {csn 4592  cmpt 5191   × cxp 5639  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  .rcmulr 17228   Σg cgsu 17410  s cpws 17416  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485   mPoly cmpl 21822   evalSub ces 21986   eval cevl 21987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-evls 21988  df-evl 21989
This theorem is referenced by:  evlvvval  42568  selvval2  42579
  Copyright terms: Public domain W3C validator