| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) |
| 2 | | sneq 4636 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑏) → {𝑥} = {(𝐹‘𝑏)}) |
| 3 | 2 | xpeq2d 5715 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑏) → (((Base‘𝑆) ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹‘𝑏)})) |
| 4 | | evlsevl.w |
. . . . . . . . . 10
⊢ 𝑊 = (𝐼 mPoly 𝑈) |
| 5 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 6 | | evlsevl.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
| 7 | | eqid 2737 |
. . . . . . . . . 10
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 8 | | evlsevl.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 9 | 4, 5, 6, 7, 8 | mplelf 22018 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑈)) |
| 10 | 9 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑏) ∈ (Base‘𝑈)) |
| 11 | | evlsevl.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| 12 | | evlsevl.u |
. . . . . . . . . . 11
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| 13 | 12 | subrgbas 20581 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 14 | 11, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 = (Base‘𝑈)) |
| 16 | 10, 15 | eleqtrrd 2844 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑏) ∈ 𝑅) |
| 17 | | ovexd 7466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((Base‘𝑆)
↑m 𝐼)
∈ V) |
| 18 | | snex 5436 |
. . . . . . . . 9
⊢ {(𝐹‘𝑏)} ∈ V |
| 19 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {(𝐹‘𝑏)} ∈ V) |
| 20 | 17, 19 | xpexd 7771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((Base‘𝑆)
↑m 𝐼)
× {(𝐹‘𝑏)}) ∈ V) |
| 21 | 1, 3, 16, 20 | fvmptd3 7039 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹‘𝑏)})) |
| 22 | | eqid 2737 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) |
| 23 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 24 | 23 | subrgss 20572 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆)) |
| 25 | 11, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ (Base‘𝑆)) |
| 26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ⊆ (Base‘𝑆)) |
| 27 | 26, 16 | sseldd 3984 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑏) ∈ (Base‘𝑆)) |
| 28 | 22, 3, 27, 20 | fvmptd3 7039 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹‘𝑏)})) |
| 29 | 21, 28 | eqtr4d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))) |
| 30 | 29 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))) |
| 31 | 30 | mpteq2dva 5242 |
. . 3
⊢ (𝜑 → (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) |
| 32 | 31 | oveq2d 7447 |
. 2
⊢ (𝜑 → ((𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))
Σg (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = ((𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))
Σg (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
| 33 | | evlsevl.q |
. . 3
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| 34 | | eqid 2737 |
. . 3
⊢ (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)) =
(𝑆
↑s ((Base‘𝑆) ↑m 𝐼)) |
| 35 | | eqid 2737 |
. . 3
⊢
(mulGrp‘(𝑆
↑s ((Base‘𝑆) ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))) |
| 36 | | eqid 2737 |
. . 3
⊢
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))) =
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))) |
| 37 | | eqid 2737 |
. . 3
⊢
(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))) =
(.r‘(𝑆
↑s ((Base‘𝑆) ↑m 𝐼))) |
| 38 | | eqid 2737 |
. . 3
⊢ (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))) |
| 39 | | evlsevl.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 40 | | evlsevl.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 41 | 33, 4, 6, 7, 23, 12, 34, 35, 36, 37, 1, 38, 39, 40, 11, 8 | evlsvval 42570 |
. 2
⊢ (𝜑 → (𝑄‘𝐹) = ((𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))
Σg (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
| 42 | | evlsevl.o |
. . . . 5
⊢ 𝑂 = (𝐼 eval 𝑆) |
| 43 | 42, 23 | evlval 22119 |
. . . 4
⊢ 𝑂 = ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) |
| 44 | 43 | fveq1i 6907 |
. . 3
⊢ (𝑂‘𝐹) = (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) |
| 45 | | eqid 2737 |
. . . 4
⊢ ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) = ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) |
| 46 | | eqid 2737 |
. . . 4
⊢ (𝐼 mPoly (𝑆 ↾s (Base‘𝑆))) = (𝐼 mPoly (𝑆 ↾s (Base‘𝑆))) |
| 47 | | eqid 2737 |
. . . 4
⊢
(Base‘(𝐼 mPoly
(𝑆 ↾s
(Base‘𝑆)))) =
(Base‘(𝐼 mPoly (𝑆 ↾s
(Base‘𝑆)))) |
| 48 | | eqid 2737 |
. . . 4
⊢ (𝑆 ↾s
(Base‘𝑆)) = (𝑆 ↾s
(Base‘𝑆)) |
| 49 | 40 | crngringd 20243 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 50 | 23 | subrgid 20573 |
. . . . 5
⊢ (𝑆 ∈ Ring →
(Base‘𝑆) ∈
(SubRing‘𝑆)) |
| 51 | 49, 50 | syl 17 |
. . . 4
⊢ (𝜑 → (Base‘𝑆) ∈ (SubRing‘𝑆)) |
| 52 | | eqid 2737 |
. . . . . 6
⊢ (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆) |
| 53 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(𝐼 mPoly
𝑆)) = (Base‘(𝐼 mPoly 𝑆)) |
| 54 | 4, 12, 6, 52, 53, 39, 11, 8 | mplsubrgcl 42558 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑆))) |
| 55 | 23 | ressid 17290 |
. . . . . . . 8
⊢ (𝑆 ∈ CRing → (𝑆 ↾s
(Base‘𝑆)) = 𝑆) |
| 56 | 40, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 57 | 56 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → (𝐼 mPoly (𝑆 ↾s (Base‘𝑆))) = (𝐼 mPoly 𝑆)) |
| 58 | 57 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑆 ↾s (Base‘𝑆)))) = (Base‘(𝐼 mPoly 𝑆))) |
| 59 | 54, 58 | eleqtrrd 2844 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly (𝑆 ↾s (Base‘𝑆))))) |
| 60 | 45, 46, 47, 7, 23, 48, 34, 35, 36, 37, 22, 38, 39, 40, 51, 59 | evlsvval 42570 |
. . 3
⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) = ((𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))
Σg (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
| 61 | 44, 60 | eqtrid 2789 |
. 2
⊢ (𝜑 → (𝑂‘𝐹) = ((𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))
Σg (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))
Σg (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
| 62 | 32, 41, 61 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝑄‘𝐹) = (𝑂‘𝐹)) |