Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsevl Structured version   Visualization version   GIF version

Theorem evlsevl 41002
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
evlsevl.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsevl.o 𝑂 = (𝐼 eval 𝑆)
evlsevl.w 𝑊 = (𝐼 mPoly 𝑈)
evlsevl.u 𝑈 = (𝑆s 𝑅)
evlsevl.b 𝐵 = (Base‘𝑊)
evlsevl.i (𝜑𝐼𝑉)
evlsevl.s (𝜑𝑆 ∈ CRing)
evlsevl.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsevl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
evlsevl (𝜑 → (𝑄𝐹) = (𝑂𝐹))

Proof of Theorem evlsevl
Dummy variables 𝑏 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . 7 (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
2 sneq 4633 . . . . . . . 8 (𝑥 = (𝐹𝑏) → {𝑥} = {(𝐹𝑏)})
32xpeq2d 5700 . . . . . . 7 (𝑥 = (𝐹𝑏) → (((Base‘𝑆) ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
4 evlsevl.w . . . . . . . . . 10 𝑊 = (𝐼 mPoly 𝑈)
5 eqid 2732 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
6 evlsevl.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
7 eqid 2732 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 evlsevl.f . . . . . . . . . 10 (𝜑𝐹𝐵)
94, 5, 6, 7, 8mplelf 21488 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
109ffvelcdmda 7072 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑈))
11 evlsevl.r . . . . . . . . . 10 (𝜑𝑅 ∈ (SubRing‘𝑆))
12 evlsevl.u . . . . . . . . . . 11 𝑈 = (𝑆s 𝑅)
1312subrgbas 20323 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
1411, 13syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
1514adantr 481 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 = (Base‘𝑈))
1610, 15eleqtrrd 2836 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ 𝑅)
17 ovexd 7429 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((Base‘𝑆) ↑m 𝐼) ∈ V)
18 snex 5425 . . . . . . . . 9 {(𝐹𝑏)} ∈ V
1918a1i 11 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝐹𝑏)} ∈ V)
2017, 19xpexd 7722 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}) ∈ V)
211, 3, 16, 20fvmptd3 7008 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
22 eqid 2732 . . . . . . 7 (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
23 eqid 2732 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2423subrgss 20315 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆))
2511, 24syl 17 . . . . . . . . 9 (𝜑𝑅 ⊆ (Base‘𝑆))
2625adantr 481 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ⊆ (Base‘𝑆))
2726, 16sseldd 3980 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑆))
2822, 3, 27, 20fvmptd3 7008 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
2921, 28eqtr4d 2775 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)))
3029oveq1d 7409 . . . 4 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))) = (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))
3130mpteq2dva 5242 . . 3 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))))
3231oveq2d 7410 . 2 (𝜑 → ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
33 evlsevl.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
34 eqid 2732 . . 3 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
35 eqid 2732 . . 3 (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
36 eqid 2732 . . 3 (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
37 eqid 2732 . . 3 (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
38 eqid 2732 . . 3 (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))) = (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))
39 evlsevl.i . . 3 (𝜑𝐼𝑉)
40 evlsevl.s . . 3 (𝜑𝑆 ∈ CRing)
4133, 4, 6, 7, 23, 12, 34, 35, 36, 37, 1, 38, 39, 40, 11, 8evlsvval 40995 . 2 (𝜑 → (𝑄𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
42 evlsevl.o . . . . 5 𝑂 = (𝐼 eval 𝑆)
4342, 23evlval 21589 . . . 4 𝑂 = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
4443fveq1i 6880 . . 3 (𝑂𝐹) = (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹)
45 eqid 2732 . . . 4 ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
46 eqid 2732 . . . 4 (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly (𝑆s (Base‘𝑆)))
47 eqid 2732 . . . 4 (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆))))
48 eqid 2732 . . . 4 (𝑆s (Base‘𝑆)) = (𝑆s (Base‘𝑆))
4940crngringd 20029 . . . . 5 (𝜑𝑆 ∈ Ring)
5023subrgid 20316 . . . . 5 (𝑆 ∈ Ring → (Base‘𝑆) ∈ (SubRing‘𝑆))
5149, 50syl 17 . . . 4 (𝜑 → (Base‘𝑆) ∈ (SubRing‘𝑆))
52 eqid 2732 . . . . . 6 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
53 eqid 2732 . . . . . 6 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
544, 12, 6, 52, 53, 39, 11, 8mplsubrgcl 40985 . . . . 5 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑆)))
5523ressid 17173 . . . . . . . 8 (𝑆 ∈ CRing → (𝑆s (Base‘𝑆)) = 𝑆)
5640, 55syl 17 . . . . . . 7 (𝜑 → (𝑆s (Base‘𝑆)) = 𝑆)
5756oveq2d 7410 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly 𝑆))
5857fveq2d 6883 . . . . 5 (𝜑 → (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly 𝑆)))
5954, 58eleqtrrd 2836 . . . 4 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))))
6045, 46, 47, 7, 23, 48, 34, 35, 36, 37, 22, 38, 39, 40, 51, 59evlsvval 40995 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6144, 60eqtrid 2784 . 2 (𝜑 → (𝑂𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6232, 41, 613eqtr4d 2782 1 (𝜑 → (𝑄𝐹) = (𝑂𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  wss 3945  {csn 4623  cmpt 5225   × cxp 5668  ccnv 5669  cima 5673  cfv 6533  (class class class)co 7394  f cof 7652  m cmap 8805  Fincfn 8924  cn 12196  0cn0 12456  Basecbs 17128  s cress 17157  .rcmulr 17182   Σg cgsu 17370  s cpws 17376  .gcmg 18924  mulGrpcmgp 19948  Ringcrg 20016  CRingccrg 20017  SubRingcsubrg 20310   mPoly cmpl 21392   evalSub ces 21564   eval cevl 21565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-ofr 7655  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-pm 8808  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-sup 9421  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-fz 13469  df-fzo 13612  df-seq 13951  df-hash 14275  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-hom 17205  df-cco 17206  df-0g 17371  df-gsum 17372  df-prds 17377  df-pws 17379  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-ghm 19058  df-cntz 19149  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-srg 19970  df-ring 20018  df-cring 20019  df-rnghom 20203  df-subrg 20312  df-lmod 20424  df-lss 20494  df-lsp 20534  df-assa 21343  df-asp 21344  df-ascl 21345  df-psr 21395  df-mvr 21396  df-mpl 21397  df-evls 21566  df-evl 21567
This theorem is referenced by:  selvval2  41012
  Copyright terms: Public domain W3C validator