Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsevl Structured version   Visualization version   GIF version

Theorem evlsevl 42552
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
evlsevl.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsevl.o 𝑂 = (𝐼 eval 𝑆)
evlsevl.w 𝑊 = (𝐼 mPoly 𝑈)
evlsevl.u 𝑈 = (𝑆s 𝑅)
evlsevl.b 𝐵 = (Base‘𝑊)
evlsevl.i (𝜑𝐼𝑉)
evlsevl.s (𝜑𝑆 ∈ CRing)
evlsevl.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsevl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
evlsevl (𝜑 → (𝑄𝐹) = (𝑂𝐹))

Proof of Theorem evlsevl
Dummy variables 𝑏 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
2 sneq 4595 . . . . . . . 8 (𝑥 = (𝐹𝑏) → {𝑥} = {(𝐹𝑏)})
32xpeq2d 5661 . . . . . . 7 (𝑥 = (𝐹𝑏) → (((Base‘𝑆) ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
4 evlsevl.w . . . . . . . . . 10 𝑊 = (𝐼 mPoly 𝑈)
5 eqid 2729 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
6 evlsevl.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
7 eqid 2729 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 evlsevl.f . . . . . . . . . 10 (𝜑𝐹𝐵)
94, 5, 6, 7, 8mplelf 21940 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑈))
109ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑈))
11 evlsevl.r . . . . . . . . . 10 (𝜑𝑅 ∈ (SubRing‘𝑆))
12 evlsevl.u . . . . . . . . . . 11 𝑈 = (𝑆s 𝑅)
1312subrgbas 20501 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈))
1411, 13syl 17 . . . . . . . . 9 (𝜑𝑅 = (Base‘𝑈))
1514adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 = (Base‘𝑈))
1610, 15eleqtrrd 2831 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ 𝑅)
17 ovexd 7404 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((Base‘𝑆) ↑m 𝐼) ∈ V)
18 snex 5386 . . . . . . . . 9 {(𝐹𝑏)} ∈ V
1918a1i 11 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝐹𝑏)} ∈ V)
2017, 19xpexd 7707 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}) ∈ V)
211, 3, 16, 20fvmptd3 6973 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
22 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
23 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2423subrgss 20492 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ (Base‘𝑆))
2511, 24syl 17 . . . . . . . . 9 (𝜑𝑅 ⊆ (Base‘𝑆))
2625adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ⊆ (Base‘𝑆))
2726, 16sseldd 3944 . . . . . . 7 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑏) ∈ (Base‘𝑆))
2822, 3, 27, 20fvmptd3 6973 . . . . . 6 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = (((Base‘𝑆) ↑m 𝐼) × {(𝐹𝑏)}))
2921, 28eqtr4d 2767 . . . . 5 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)) = ((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏)))
3029oveq1d 7384 . . . 4 ((𝜑𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))) = (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))
3130mpteq2dva 5195 . . 3 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))))))))
3231oveq2d 7385 . 2 (𝜑 → ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
33 evlsevl.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
34 eqid 2729 . . 3 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
35 eqid 2729 . . 3 (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
36 eqid 2729 . . 3 (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))) = (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
37 eqid 2729 . . 3 (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
38 eqid 2729 . . 3 (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥))) = (𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))
39 evlsevl.i . . 3 (𝜑𝐼𝑉)
40 evlsevl.s . . 3 (𝜑𝑆 ∈ CRing)
4133, 4, 6, 7, 23, 12, 34, 35, 36, 37, 1, 38, 39, 40, 11, 8evlsvval 42541 . 2 (𝜑 → (𝑄𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
42 evlsevl.o . . . . 5 𝑂 = (𝐼 eval 𝑆)
4342, 23evlval 22035 . . . 4 𝑂 = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
4443fveq1i 6841 . . 3 (𝑂𝐹) = (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹)
45 eqid 2729 . . . 4 ((𝐼 evalSub 𝑆)‘(Base‘𝑆)) = ((𝐼 evalSub 𝑆)‘(Base‘𝑆))
46 eqid 2729 . . . 4 (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly (𝑆s (Base‘𝑆)))
47 eqid 2729 . . . 4 (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆))))
48 eqid 2729 . . . 4 (𝑆s (Base‘𝑆)) = (𝑆s (Base‘𝑆))
4940crngringd 20166 . . . . 5 (𝜑𝑆 ∈ Ring)
5023subrgid 20493 . . . . 5 (𝑆 ∈ Ring → (Base‘𝑆) ∈ (SubRing‘𝑆))
5149, 50syl 17 . . . 4 (𝜑 → (Base‘𝑆) ∈ (SubRing‘𝑆))
52 eqid 2729 . . . . . 6 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
53 eqid 2729 . . . . . 6 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
544, 12, 6, 52, 53, 39, 11, 8mplsubrgcl 42529 . . . . 5 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑆)))
5523ressid 17190 . . . . . . . 8 (𝑆 ∈ CRing → (𝑆s (Base‘𝑆)) = 𝑆)
5640, 55syl 17 . . . . . . 7 (𝜑 → (𝑆s (Base‘𝑆)) = 𝑆)
5756oveq2d 7385 . . . . . 6 (𝜑 → (𝐼 mPoly (𝑆s (Base‘𝑆))) = (𝐼 mPoly 𝑆))
5857fveq2d 6844 . . . . 5 (𝜑 → (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))) = (Base‘(𝐼 mPoly 𝑆)))
5954, 58eleqtrrd 2831 . . . 4 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly (𝑆s (Base‘𝑆)))))
6045, 46, 47, 7, 23, 48, 34, 35, 36, 37, 22, 38, 39, 40, 51, 59evlsvval 42541 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘(Base‘𝑆))‘𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6144, 60eqtrid 2776 . 2 (𝜑 → (𝑂𝐹) = ((𝑆s ((Base‘𝑆) ↑m 𝐼)) Σg (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑥 ∈ (Base‘𝑆) ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))‘(𝐹𝑏))(.r‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))((mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) Σg (𝑏f (.g‘(mulGrp‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))(𝑥𝐼 ↦ (𝑎 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑎𝑥)))))))))
6232, 41, 613eqtr4d 2774 1 (𝜑 → (𝑄𝐹) = (𝑂𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  wss 3911  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  f cof 7631  m cmap 8776  Fincfn 8895  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  .rcmulr 17197   Σg cgsu 17379  s cpws 17385  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  SubRingcsubrg 20489   mPoly cmpl 21848   evalSub ces 22012   eval cevl 22013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-evls 22014  df-evl 22015
This theorem is referenced by:  evlvvval  42554  selvval2  42565
  Copyright terms: Public domain W3C validator