MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1sca Structured version   Visualization version   GIF version

Theorem evl1sca 22270
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1sca.o 𝑂 = (eval1𝑅)
evl1sca.p 𝑃 = (Poly1𝑅)
evl1sca.b 𝐵 = (Base‘𝑅)
evl1sca.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evl1sca ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evl1sca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20203 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
3 evl1sca.p . . . . . 6 𝑃 = (Poly1𝑅)
4 evl1sca.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 evl1sca.b . . . . . 6 𝐵 = (Base‘𝑅)
6 eqid 2735 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
73, 4, 5, 6ply1sclf 22220 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃))
82, 7syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴:𝐵⟶(Base‘𝑃))
9 ffvelcdm 7070 . . . 4 ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
108, 9sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
11 evl1sca.o . . . 4 𝑂 = (eval1𝑅)
12 eqid 2735 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
13 eqid 2735 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
143, 6ply1bas 22128 . . . 4 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
1511, 12, 5, 13, 14evl1val 22265 . . 3 ((𝑅 ∈ CRing ∧ (𝐴𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
1610, 15syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
173, 4ply1ascl 22193 . . . . . . 7 𝐴 = (algSc‘(1o mPoly 𝑅))
185ressid 17263 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1918adantr 480 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅s 𝐵) = 𝑅)
2019oveq2d 7419 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
2120fveq2d 6879 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
2217, 21eqtr4id 2789 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅s 𝐵))))
2322fveq1d 6877 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) = ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋))
2423fveq2d 6879 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)))
2512, 5evlval 22051 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
26 eqid 2735 . . . . 5 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
27 eqid 2735 . . . . 5 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2735 . . . . 5 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
29 1on 8490 . . . . . 6 1o ∈ On
3029a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 1o ∈ On)
31 simpl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ CRing)
325subrgid 20531 . . . . . 6 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
332, 32syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 ∈ (SubRing‘𝑅))
34 simpr 484 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑋𝐵)
3525, 26, 27, 5, 28, 30, 31, 33, 34evlssca 22045 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
3624, 35eqtrd 2770 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
3736coeq1d 5841 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
38 df1o2 8485 . . . . . . 7 1o = {∅}
395fvexi 6889 . . . . . . 7 𝐵 ∈ V
40 0ex 5277 . . . . . . 7 ∅ ∈ V
41 eqid 2735 . . . . . . 7 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
4238, 39, 40, 41mapsnf1o3 8907 . . . . . 6 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
43 f1of 6817 . . . . . 6 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4442, 43mp1i 13 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4541fmpt 7099 . . . . 5 (∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o) ↔ (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4644, 45sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o))
47 eqidd 2736 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
48 fconstmpt 5716 . . . . 5 ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋)
4948a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋))
50 eqidd 2736 . . . 4 (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋)
5146, 47, 49, 50fmptcof 7119 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
52 fconstmpt 5716 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
5351, 52eqtr4di 2788 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋}))
5416, 37, 533eqtrd 2774 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  c0 4308  {csn 4601  cmpt 5201   × cxp 5652  ccom 5658  Oncon0 6352  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  1oc1o 8471  m cmap 8838  Basecbs 17226  s cress 17249  Ringcrg 20191  CRingccrg 20192  SubRingcsubrg 20527  algSccascl 21810   mPoly cmpl 21864   eval cevl 22029  Poly1cpl1 22110  eval1ce1 22250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-lsp 20927  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-ply1 22115  df-evl1 22252
This theorem is referenced by:  evl1scad  22271  pf1const  22282  pf1ind  22291  evl1scvarpw  22299  ply1rem  26121  fta1g  26125  fta1blem  26126  plypf1  26167
  Copyright terms: Public domain W3C validator