![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1sca | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evl1sca.o | ⊢ 𝑂 = (eval1‘𝑅) |
evl1sca.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1sca.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1sca.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
evl1sca | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20262 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
3 | evl1sca.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | evl1sca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | evl1sca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | 3, 4, 5, 6 | ply1sclf 22303 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴:𝐵⟶(Base‘𝑃)) |
9 | ffvelcdm 7100 | . . . 4 ⊢ ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) | |
10 | 8, 9 | sylancom 588 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) |
11 | evl1sca.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
12 | eqid 2734 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
13 | eqid 2734 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
14 | 3, 6 | ply1bas 22211 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
15 | 11, 12, 5, 13, 14 | evl1val 22348 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝐴‘𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
16 | 10, 15 | syldan 591 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
17 | 3, 4 | ply1ascl 22276 | . . . . . . 7 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
18 | 5 | ressid 17289 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ↾s 𝐵) = 𝑅) |
20 | 19 | oveq2d 7446 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly 𝑅)) |
21 | 20 | fveq2d 6910 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly 𝑅))) |
22 | 17, 21 | eqtr4id 2793 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅 ↾s 𝐵)))) |
23 | 22 | fveq1d 6908 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) = ((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) |
24 | 23 | fveq2d 6910 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋))) |
25 | 12, 5 | evlval 22136 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
26 | eqid 2734 | . . . . 5 ⊢ (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly (𝑅 ↾s 𝐵)) | |
27 | eqid 2734 | . . . . 5 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
28 | eqid 2734 | . . . . 5 ⊢ (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) | |
29 | 1on 8516 | . . . . . 6 ⊢ 1o ∈ On | |
30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 1o ∈ On) |
31 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ CRing) | |
32 | 5 | subrgid 20589 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
33 | 2, 32 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ (SubRing‘𝑅)) |
34 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
35 | 25, 26, 27, 5, 28, 30, 31, 33, 34 | evlssca 22130 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
36 | 24, 35 | eqtrd 2774 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
37 | 36 | coeq1d 5874 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
38 | df1o2 8511 | . . . . . . 7 ⊢ 1o = {∅} | |
39 | 5 | fvexi 6920 | . . . . . . 7 ⊢ 𝐵 ∈ V |
40 | 0ex 5312 | . . . . . . 7 ⊢ ∅ ∈ V | |
41 | eqid 2734 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | |
42 | 38, 39, 40, 41 | mapsnf1o3 8933 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) |
43 | f1of 6848 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) | |
44 | 42, 43 | mp1i 13 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
45 | 41 | fmpt 7129 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o) ↔ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
46 | 44, 45 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o)) |
47 | eqidd 2735 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) | |
48 | fconstmpt 5750 | . . . . 5 ⊢ ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋) | |
49 | 48 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋)) |
50 | eqidd 2735 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋) | |
51 | 46, 47, 49, 50 | fmptcof 7149 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
52 | fconstmpt 5750 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
53 | 51, 52 | eqtr4di 2792 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋})) |
54 | 16, 37, 53 | 3eqtrd 2778 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∅c0 4338 {csn 4630 ↦ cmpt 5230 × cxp 5686 ∘ ccom 5692 Oncon0 6385 ⟶wf 6558 –1-1-onto→wf1o 6561 ‘cfv 6562 (class class class)co 7430 1oc1o 8497 ↑m cmap 8864 Basecbs 17244 ↾s cress 17273 Ringcrg 20250 CRingccrg 20251 SubRingcsubrg 20585 algSccascl 21889 mPoly cmpl 21943 eval cevl 22114 Poly1cpl1 22193 eval1ce1 22333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-srg 20204 df-ring 20252 df-cring 20253 df-rhm 20488 df-subrng 20562 df-subrg 20586 df-lmod 20876 df-lss 20947 df-lsp 20987 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 df-opsr 21950 df-evls 22115 df-evl 22116 df-psr1 22196 df-ply1 22198 df-evl1 22335 |
This theorem is referenced by: evl1scad 22354 pf1const 22365 pf1ind 22374 evl1scvarpw 22382 ply1rem 26219 fta1g 26223 fta1blem 26224 plypf1 26265 |
Copyright terms: Public domain | W3C validator |