| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1sca | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| evl1sca.o | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1sca.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1sca.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1sca.a | ⊢ 𝐴 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| evl1sca | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20163 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 3 | evl1sca.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | evl1sca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
| 5 | evl1sca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 7 | 3, 4, 5, 6 | ply1sclf 22199 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃)) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴:𝐵⟶(Base‘𝑃)) |
| 9 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) | |
| 10 | 8, 9 | sylancom 588 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) |
| 11 | evl1sca.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
| 12 | eqid 2731 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 13 | eqid 2731 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 14 | 3, 6 | ply1bas 22107 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
| 15 | 11, 12, 5, 13, 14 | evl1val 22244 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝐴‘𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 16 | 10, 15 | syldan 591 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 17 | 3, 4 | ply1ascl 22172 | . . . . . . 7 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
| 18 | 5 | ressid 17155 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
| 19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ↾s 𝐵) = 𝑅) |
| 20 | 19 | oveq2d 7362 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly 𝑅)) |
| 21 | 20 | fveq2d 6826 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly 𝑅))) |
| 22 | 17, 21 | eqtr4id 2785 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅 ↾s 𝐵)))) |
| 23 | 22 | fveq1d 6824 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) = ((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) |
| 24 | 23 | fveq2d 6826 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋))) |
| 25 | 12, 5 | evlval 22030 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
| 26 | eqid 2731 | . . . . 5 ⊢ (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly (𝑅 ↾s 𝐵)) | |
| 27 | eqid 2731 | . . . . 5 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
| 28 | eqid 2731 | . . . . 5 ⊢ (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) | |
| 29 | 1on 8397 | . . . . . 6 ⊢ 1o ∈ On | |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 1o ∈ On) |
| 31 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ CRing) | |
| 32 | 5 | subrgid 20488 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
| 33 | 2, 32 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ (SubRing‘𝑅)) |
| 34 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 35 | 25, 26, 27, 5, 28, 30, 31, 33, 34 | evlssca 22024 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
| 36 | 24, 35 | eqtrd 2766 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
| 37 | 36 | coeq1d 5800 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 38 | df1o2 8392 | . . . . . . 7 ⊢ 1o = {∅} | |
| 39 | 5 | fvexi 6836 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 40 | 0ex 5243 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 41 | eqid 2731 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | |
| 42 | 38, 39, 40, 41 | mapsnf1o3 8819 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) |
| 43 | f1of 6763 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) | |
| 44 | 42, 43 | mp1i 13 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
| 45 | 41 | fmpt 7043 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o) ↔ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
| 46 | 44, 45 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o)) |
| 47 | eqidd 2732 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) | |
| 48 | fconstmpt 5676 | . . . . 5 ⊢ ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋) | |
| 49 | 48 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋)) |
| 50 | eqidd 2732 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋) | |
| 51 | 46, 47, 49, 50 | fmptcof 7063 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
| 52 | fconstmpt 5676 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
| 53 | 51, 52 | eqtr4di 2784 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋})) |
| 54 | 16, 37, 53 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 {csn 4573 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 Oncon0 6306 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Basecbs 17120 ↾s cress 17141 Ringcrg 20151 CRingccrg 20152 SubRingcsubrg 20484 algSccascl 21789 mPoly cmpl 21843 eval cevl 22008 Poly1cpl1 22089 eval1ce1 22229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-ply1 22094 df-evl1 22231 |
| This theorem is referenced by: evl1scad 22250 pf1const 22261 pf1ind 22270 evl1scvarpw 22278 ply1rem 26098 fta1g 26102 fta1blem 26103 plypf1 26144 |
| Copyright terms: Public domain | W3C validator |