MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1sca Structured version   Visualization version   GIF version

Theorem evl1sca 21511
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1sca.o 𝑂 = (eval1𝑅)
evl1sca.p 𝑃 = (Poly1𝑅)
evl1sca.b 𝐵 = (Base‘𝑅)
evl1sca.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evl1sca ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evl1sca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19806 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
3 evl1sca.p . . . . . 6 𝑃 = (Poly1𝑅)
4 evl1sca.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 evl1sca.b . . . . . 6 𝐵 = (Base‘𝑅)
6 eqid 2740 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
73, 4, 5, 6ply1sclf 21467 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃))
82, 7syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴:𝐵⟶(Base‘𝑃))
9 ffvelrn 6956 . . . 4 ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
108, 9sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
11 evl1sca.o . . . 4 𝑂 = (eval1𝑅)
12 eqid 2740 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
13 eqid 2740 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
14 eqid 2740 . . . . 5 (PwSer1𝑅) = (PwSer1𝑅)
153, 14, 6ply1bas 21377 . . . 4 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
1611, 12, 5, 13, 15evl1val 21506 . . 3 ((𝑅 ∈ CRing ∧ (𝐴𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
1710, 16syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
183, 4ply1ascl 21440 . . . . . . 7 𝐴 = (algSc‘(1o mPoly 𝑅))
195ressid 16965 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
2019adantr 481 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅s 𝐵) = 𝑅)
2120oveq2d 7288 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
2221fveq2d 6775 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
2318, 22eqtr4id 2799 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅s 𝐵))))
2423fveq1d 6773 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) = ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋))
2524fveq2d 6775 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)))
2612, 5evlval 21316 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
27 eqid 2740 . . . . 5 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
28 eqid 2740 . . . . 5 (𝑅s 𝐵) = (𝑅s 𝐵)
29 eqid 2740 . . . . 5 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
30 1on 8301 . . . . . 6 1o ∈ On
3130a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 1o ∈ On)
32 simpl 483 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ CRing)
335subrgid 20037 . . . . . 6 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
342, 33syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 ∈ (SubRing‘𝑅))
35 simpr 485 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑋𝐵)
3626, 27, 28, 5, 29, 31, 32, 34, 35evlssca 21310 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
3725, 36eqtrd 2780 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
3837coeq1d 5769 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
39 df1o2 8296 . . . . . . 7 1o = {∅}
405fvexi 6785 . . . . . . 7 𝐵 ∈ V
41 0ex 5235 . . . . . . 7 ∅ ∈ V
42 eqid 2740 . . . . . . 7 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
4339, 40, 41, 42mapsnf1o3 8675 . . . . . 6 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
44 f1of 6714 . . . . . 6 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4543, 44mp1i 13 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4642fmpt 6981 . . . . 5 (∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o) ↔ (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4745, 46sylibr 233 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o))
48 eqidd 2741 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
49 fconstmpt 5650 . . . . 5 ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋)
5049a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋))
51 eqidd 2741 . . . 4 (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋)
5247, 48, 50, 51fmptcof 6999 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
53 fconstmpt 5650 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
5452, 53eqtr4di 2798 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋}))
5517, 38, 543eqtrd 2784 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  c0 4262  {csn 4567  cmpt 5162   × cxp 5588  ccom 5594  Oncon0 6265  wf 6428  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7272  1oc1o 8282  m cmap 8607  Basecbs 16923  s cress 16952  Ringcrg 19794  CRingccrg 19795  SubRingcsubrg 20031  algSccascl 21070   mPoly cmpl 21120   eval cevl 21292  PwSer1cps1 21357  Poly1cpl1 21359  eval1ce1 21491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-ofr 7529  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-fz 13251  df-fzo 13394  df-seq 13733  df-hash 14056  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-hom 16997  df-cco 16998  df-0g 17163  df-gsum 17164  df-prds 17169  df-pws 17171  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-mulg 18712  df-subg 18763  df-ghm 18843  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-srg 19753  df-ring 19796  df-cring 19797  df-rnghom 19970  df-subrg 20033  df-lmod 20136  df-lss 20205  df-lsp 20245  df-assa 21071  df-asp 21072  df-ascl 21073  df-psr 21123  df-mvr 21124  df-mpl 21125  df-opsr 21127  df-evls 21293  df-evl 21294  df-psr1 21362  df-ply1 21364  df-evl1 21493
This theorem is referenced by:  evl1scad  21512  pf1const  21523  pf1ind  21532  evl1scvarpw  21540  ply1rem  25339  fta1g  25343  fta1blem  25344  plypf1  25384
  Copyright terms: Public domain W3C validator