MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1sca Structured version   Visualization version   GIF version

Theorem evl1sca 22249
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1sca.o 𝑂 = (eval1𝑅)
evl1sca.p 𝑃 = (Poly1𝑅)
evl1sca.b 𝐵 = (Base‘𝑅)
evl1sca.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evl1sca ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evl1sca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20163 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
3 evl1sca.p . . . . . 6 𝑃 = (Poly1𝑅)
4 evl1sca.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 evl1sca.b . . . . . 6 𝐵 = (Base‘𝑅)
6 eqid 2731 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
73, 4, 5, 6ply1sclf 22199 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃))
82, 7syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴:𝐵⟶(Base‘𝑃))
9 ffvelcdm 7014 . . . 4 ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
108, 9sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
11 evl1sca.o . . . 4 𝑂 = (eval1𝑅)
12 eqid 2731 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
13 eqid 2731 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
143, 6ply1bas 22107 . . . 4 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
1511, 12, 5, 13, 14evl1val 22244 . . 3 ((𝑅 ∈ CRing ∧ (𝐴𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
1610, 15syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
173, 4ply1ascl 22172 . . . . . . 7 𝐴 = (algSc‘(1o mPoly 𝑅))
185ressid 17155 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1918adantr 480 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅s 𝐵) = 𝑅)
2019oveq2d 7362 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
2120fveq2d 6826 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
2217, 21eqtr4id 2785 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅s 𝐵))))
2322fveq1d 6824 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) = ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋))
2423fveq2d 6826 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)))
2512, 5evlval 22030 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
26 eqid 2731 . . . . 5 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
27 eqid 2731 . . . . 5 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2731 . . . . 5 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
29 1on 8397 . . . . . 6 1o ∈ On
3029a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 1o ∈ On)
31 simpl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ CRing)
325subrgid 20488 . . . . . 6 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
332, 32syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 ∈ (SubRing‘𝑅))
34 simpr 484 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑋𝐵)
3525, 26, 27, 5, 28, 30, 31, 33, 34evlssca 22024 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
3624, 35eqtrd 2766 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
3736coeq1d 5800 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
38 df1o2 8392 . . . . . . 7 1o = {∅}
395fvexi 6836 . . . . . . 7 𝐵 ∈ V
40 0ex 5243 . . . . . . 7 ∅ ∈ V
41 eqid 2731 . . . . . . 7 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
4238, 39, 40, 41mapsnf1o3 8819 . . . . . 6 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
43 f1of 6763 . . . . . 6 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4442, 43mp1i 13 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4541fmpt 7043 . . . . 5 (∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o) ↔ (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4644, 45sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o))
47 eqidd 2732 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
48 fconstmpt 5676 . . . . 5 ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋)
4948a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋))
50 eqidd 2732 . . . 4 (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋)
5146, 47, 49, 50fmptcof 7063 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
52 fconstmpt 5676 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
5351, 52eqtr4di 2784 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋}))
5416, 37, 533eqtrd 2770 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  ccom 5618  Oncon0 6306  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Basecbs 17120  s cress 17141  Ringcrg 20151  CRingccrg 20152  SubRingcsubrg 20484  algSccascl 21789   mPoly cmpl 21843   eval cevl 22008  Poly1cpl1 22089  eval1ce1 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-ply1 22094  df-evl1 22231
This theorem is referenced by:  evl1scad  22250  pf1const  22261  pf1ind  22270  evl1scvarpw  22278  ply1rem  26098  fta1g  26102  fta1blem  26103  plypf1  26144
  Copyright terms: Public domain W3C validator