MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1sca Structured version   Visualization version   GIF version

Theorem evl1sca 22353
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1sca.o 𝑂 = (eval1𝑅)
evl1sca.p 𝑃 = (Poly1𝑅)
evl1sca.b 𝐵 = (Base‘𝑅)
evl1sca.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evl1sca ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evl1sca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20262 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
3 evl1sca.p . . . . . 6 𝑃 = (Poly1𝑅)
4 evl1sca.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 evl1sca.b . . . . . 6 𝐵 = (Base‘𝑅)
6 eqid 2734 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
73, 4, 5, 6ply1sclf 22303 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃))
82, 7syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴:𝐵⟶(Base‘𝑃))
9 ffvelcdm 7100 . . . 4 ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
108, 9sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
11 evl1sca.o . . . 4 𝑂 = (eval1𝑅)
12 eqid 2734 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
13 eqid 2734 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
143, 6ply1bas 22211 . . . 4 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
1511, 12, 5, 13, 14evl1val 22348 . . 3 ((𝑅 ∈ CRing ∧ (𝐴𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
1610, 15syldan 591 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
173, 4ply1ascl 22276 . . . . . . 7 𝐴 = (algSc‘(1o mPoly 𝑅))
185ressid 17289 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1918adantr 480 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅s 𝐵) = 𝑅)
2019oveq2d 7446 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
2120fveq2d 6910 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
2217, 21eqtr4id 2793 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅s 𝐵))))
2322fveq1d 6908 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) = ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋))
2423fveq2d 6910 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)))
2512, 5evlval 22136 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
26 eqid 2734 . . . . 5 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
27 eqid 2734 . . . . 5 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2734 . . . . 5 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
29 1on 8516 . . . . . 6 1o ∈ On
3029a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 1o ∈ On)
31 simpl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ CRing)
325subrgid 20589 . . . . . 6 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
332, 32syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 ∈ (SubRing‘𝑅))
34 simpr 484 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑋𝐵)
3525, 26, 27, 5, 28, 30, 31, 33, 34evlssca 22130 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
3624, 35eqtrd 2774 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
3736coeq1d 5874 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
38 df1o2 8511 . . . . . . 7 1o = {∅}
395fvexi 6920 . . . . . . 7 𝐵 ∈ V
40 0ex 5312 . . . . . . 7 ∅ ∈ V
41 eqid 2734 . . . . . . 7 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
4238, 39, 40, 41mapsnf1o3 8933 . . . . . 6 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
43 f1of 6848 . . . . . 6 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4442, 43mp1i 13 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4541fmpt 7129 . . . . 5 (∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o) ↔ (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4644, 45sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o))
47 eqidd 2735 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
48 fconstmpt 5750 . . . . 5 ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋)
4948a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋))
50 eqidd 2735 . . . 4 (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋)
5146, 47, 49, 50fmptcof 7149 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
52 fconstmpt 5750 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
5351, 52eqtr4di 2792 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋}))
5416, 37, 533eqtrd 2778 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  c0 4338  {csn 4630  cmpt 5230   × cxp 5686  ccom 5692  Oncon0 6385  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  1oc1o 8497  m cmap 8864  Basecbs 17244  s cress 17273  Ringcrg 20250  CRingccrg 20251  SubRingcsubrg 20585  algSccascl 21889   mPoly cmpl 21943   eval cevl 22114  Poly1cpl1 22193  eval1ce1 22333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-evl 22116  df-psr1 22196  df-ply1 22198  df-evl1 22335
This theorem is referenced by:  evl1scad  22354  pf1const  22365  pf1ind  22374  evl1scvarpw  22382  ply1rem  26219  fta1g  26223  fta1blem  26224  plypf1  26265
  Copyright terms: Public domain W3C validator