MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1sca Structured version   Visualization version   GIF version

Theorem evl1sca 22359
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1sca.o 𝑂 = (eval1𝑅)
evl1sca.p 𝑃 = (Poly1𝑅)
evl1sca.b 𝐵 = (Base‘𝑅)
evl1sca.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
evl1sca ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))

Proof of Theorem evl1sca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
3 evl1sca.p . . . . . 6 𝑃 = (Poly1𝑅)
4 evl1sca.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 evl1sca.b . . . . . 6 𝐵 = (Base‘𝑅)
6 eqid 2740 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
73, 4, 5, 6ply1sclf 22309 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃))
82, 7syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴:𝐵⟶(Base‘𝑃))
9 ffvelcdm 7115 . . . 4 ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
108, 9sylancom 587 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) ∈ (Base‘𝑃))
11 evl1sca.o . . . 4 𝑂 = (eval1𝑅)
12 eqid 2740 . . . 4 (1o eval 𝑅) = (1o eval 𝑅)
13 eqid 2740 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
143, 6ply1bas 22217 . . . 4 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
1511, 12, 5, 13, 14evl1val 22354 . . 3 ((𝑅 ∈ CRing ∧ (𝐴𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
1610, 15syldan 590 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
173, 4ply1ascl 22282 . . . . . . 7 𝐴 = (algSc‘(1o mPoly 𝑅))
185ressid 17303 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1918adantr 480 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅s 𝐵) = 𝑅)
2019oveq2d 7464 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
2120fveq2d 6924 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
2217, 21eqtr4id 2799 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅s 𝐵))))
2322fveq1d 6922 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝐴𝑋) = ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋))
2423fveq2d 6924 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)))
2512, 5evlval 22142 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
26 eqid 2740 . . . . 5 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
27 eqid 2740 . . . . 5 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2740 . . . . 5 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
29 1on 8534 . . . . . 6 1o ∈ On
3029a1i 11 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 1o ∈ On)
31 simpl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑅 ∈ CRing)
325subrgid 20601 . . . . . 6 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
332, 32syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 ∈ (SubRing‘𝑅))
34 simpr 484 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝑋𝐵)
3525, 26, 27, 5, 28, 30, 31, 33, 34evlssca 22136 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑋)) = ((𝐵m 1o) × {𝑋}))
3624, 35eqtrd 2780 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((1o eval 𝑅)‘(𝐴𝑋)) = ((𝐵m 1o) × {𝑋}))
3736coeq1d 5886 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((1o eval 𝑅)‘(𝐴𝑋)) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
38 df1o2 8529 . . . . . . 7 1o = {∅}
395fvexi 6934 . . . . . . 7 𝐵 ∈ V
40 0ex 5325 . . . . . . 7 ∅ ∈ V
41 eqid 2740 . . . . . . 7 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
4238, 39, 40, 41mapsnf1o3 8953 . . . . . 6 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
43 f1of 6862 . . . . . 6 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4442, 43mp1i 13 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4541fmpt 7144 . . . . 5 (∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o) ↔ (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
4644, 45sylibr 234 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ∀𝑦𝐵 (1o × {𝑦}) ∈ (𝐵m 1o))
47 eqidd 2741 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
48 fconstmpt 5762 . . . . 5 ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋)
4948a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐵m 1o) × {𝑋}) = (𝑥 ∈ (𝐵m 1o) ↦ 𝑋))
50 eqidd 2741 . . . 4 (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋)
5146, 47, 49, 50fmptcof 7164 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝑦𝐵𝑋))
52 fconstmpt 5762 . . 3 (𝐵 × {𝑋}) = (𝑦𝐵𝑋)
5351, 52eqtr4di 2798 . 2 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (((𝐵m 1o) × {𝑋}) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋}))
5416, 37, 533eqtrd 2784 1 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑂‘(𝐴𝑋)) = (𝐵 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  ccom 5704  Oncon0 6395  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Basecbs 17258  s cress 17287  Ringcrg 20260  CRingccrg 20261  SubRingcsubrg 20595  algSccascl 21895   mPoly cmpl 21949   eval cevl 22120  Poly1cpl1 22199  eval1ce1 22339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-ply1 22204  df-evl1 22341
This theorem is referenced by:  evl1scad  22360  pf1const  22371  pf1ind  22380  evl1scvarpw  22388  ply1rem  26225  fta1g  26229  fta1blem  26230  plypf1  26271
  Copyright terms: Public domain W3C validator