Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1sca | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evl1sca.o | ⊢ 𝑂 = (eval1‘𝑅) |
evl1sca.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1sca.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1sca.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
evl1sca | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19806 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
3 | evl1sca.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | evl1sca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | evl1sca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | 3, 4, 5, 6 | ply1sclf 21467 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴:𝐵⟶(Base‘𝑃)) |
9 | ffvelrn 6956 | . . . 4 ⊢ ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) | |
10 | 8, 9 | sylancom 588 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) |
11 | evl1sca.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
12 | eqid 2740 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
13 | eqid 2740 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
14 | eqid 2740 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
15 | 3, 14, 6 | ply1bas 21377 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(1o mPoly 𝑅)) |
16 | 11, 12, 5, 13, 15 | evl1val 21506 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝐴‘𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
17 | 10, 16 | syldan 591 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
18 | 3, 4 | ply1ascl 21440 | . . . . . . 7 ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) |
19 | 5 | ressid 16965 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
20 | 19 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ↾s 𝐵) = 𝑅) |
21 | 20 | oveq2d 7288 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly 𝑅)) |
22 | 21 | fveq2d 6775 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly 𝑅))) |
23 | 18, 22 | eqtr4id 2799 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴 = (algSc‘(1o mPoly (𝑅 ↾s 𝐵)))) |
24 | 23 | fveq1d 6773 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) = ((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) |
25 | 24 | fveq2d 6775 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋))) |
26 | 12, 5 | evlval 21316 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
27 | eqid 2740 | . . . . 5 ⊢ (1o mPoly (𝑅 ↾s 𝐵)) = (1o mPoly (𝑅 ↾s 𝐵)) | |
28 | eqid 2740 | . . . . 5 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
29 | eqid 2740 | . . . . 5 ⊢ (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1o mPoly (𝑅 ↾s 𝐵))) | |
30 | 1on 8301 | . . . . . 6 ⊢ 1o ∈ On | |
31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 1o ∈ On) |
32 | simpl 483 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ CRing) | |
33 | 5 | subrgid 20037 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 2, 33 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ (SubRing‘𝑅)) |
35 | simpr 485 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
36 | 26, 27, 28, 5, 29, 31, 32, 34, 35 | evlssca 21310 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
37 | 25, 36 | eqtrd 2780 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1o eval 𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑m 1o) × {𝑋})) |
38 | 37 | coeq1d 5769 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((1o eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
39 | df1o2 8296 | . . . . . . 7 ⊢ 1o = {∅} | |
40 | 5 | fvexi 6785 | . . . . . . 7 ⊢ 𝐵 ∈ V |
41 | 0ex 5235 | . . . . . . 7 ⊢ ∅ ∈ V | |
42 | eqid 2740 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | |
43 | 39, 40, 41, 42 | mapsnf1o3 8675 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) |
44 | f1of 6714 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) | |
45 | 43, 44 | mp1i 13 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
46 | 42 | fmpt 6981 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o) ↔ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
47 | 45, 46 | sylibr 233 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (1o × {𝑦}) ∈ (𝐵 ↑m 1o)) |
48 | eqidd 2741 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) | |
49 | fconstmpt 5650 | . . . . 5 ⊢ ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋) | |
50 | 49 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐵 ↑m 1o) × {𝑋}) = (𝑥 ∈ (𝐵 ↑m 1o) ↦ 𝑋)) |
51 | eqidd 2741 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → 𝑋 = 𝑋) | |
52 | 47, 48, 50, 51 | fmptcof 6999 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
53 | fconstmpt 5650 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
54 | 52, 53 | eqtr4di 2798 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑m 1o) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐵 × {𝑋})) |
55 | 17, 38, 54 | 3eqtrd 2784 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∅c0 4262 {csn 4567 ↦ cmpt 5162 × cxp 5588 ∘ ccom 5594 Oncon0 6265 ⟶wf 6428 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7272 1oc1o 8282 ↑m cmap 8607 Basecbs 16923 ↾s cress 16952 Ringcrg 19794 CRingccrg 19795 SubRingcsubrg 20031 algSccascl 21070 mPoly cmpl 21120 eval cevl 21292 PwSer1cps1 21357 Poly1cpl1 21359 eval1ce1 21491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-ofr 7529 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-pm 8610 df-ixp 8678 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-sup 9189 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-fz 13251 df-fzo 13394 df-seq 13733 df-hash 14056 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-sca 16989 df-vsca 16990 df-ip 16991 df-tset 16992 df-ple 16993 df-ds 16995 df-hom 16997 df-cco 16998 df-0g 17163 df-gsum 17164 df-prds 17169 df-pws 17171 df-mre 17306 df-mrc 17307 df-acs 17309 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-mhm 18441 df-submnd 18442 df-grp 18591 df-minusg 18592 df-sbg 18593 df-mulg 18712 df-subg 18763 df-ghm 18843 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-srg 19753 df-ring 19796 df-cring 19797 df-rnghom 19970 df-subrg 20033 df-lmod 20136 df-lss 20205 df-lsp 20245 df-assa 21071 df-asp 21072 df-ascl 21073 df-psr 21123 df-mvr 21124 df-mpl 21125 df-opsr 21127 df-evls 21293 df-evl 21294 df-psr1 21362 df-ply1 21364 df-evl1 21493 |
This theorem is referenced by: evl1scad 21512 pf1const 21523 pf1ind 21532 evl1scvarpw 21540 ply1rem 25339 fta1g 25343 fta1blem 25344 plypf1 25384 |
Copyright terms: Public domain | W3C validator |