|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpfpf1 | Structured version Visualization version GIF version | ||
| Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) | 
| pf1f.b | ⊢ 𝐵 = (Base‘𝑅) | 
| mpfpf1.q | ⊢ 𝐸 = ran (1o eval 𝑅) | 
| Ref | Expression | 
|---|---|
| mpfpf1 | ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpfpf1.q | . . . . 5 ⊢ 𝐸 = ran (1o eval 𝑅) | |
| 2 | eqid 2737 | . . . . . . 7 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 3 | pf1f.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 2, 3 | evlval 22119 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) | 
| 5 | 4 | rneqi 5948 | . . . . 5 ⊢ ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵) | 
| 6 | 1, 5 | eqtri 2765 | . . . 4 ⊢ 𝐸 = ran ((1o evalSub 𝑅)‘𝐵) | 
| 7 | 6 | mpfrcl 22109 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅))) | 
| 8 | 7 | simp2d 1144 | . 2 ⊢ (𝐹 ∈ 𝐸 → 𝑅 ∈ CRing) | 
| 9 | id 22 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ 𝐸) | |
| 10 | 9, 1 | eleqtrdi 2851 | . . 3 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ ran (1o eval 𝑅)) | 
| 11 | 1on 8518 | . . . . 5 ⊢ 1o ∈ On | |
| 12 | eqid 2737 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 13 | eqid 2737 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
| 14 | 2, 3, 12, 13 | evlrhm 22120 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) | 
| 15 | 11, 8, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) | 
| 16 | eqid 2737 | . . . . . 6 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 17 | eqid 2737 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 18 | 16, 17 | ply1bas 22196 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) | 
| 19 | eqid 2737 | . . . . 5 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
| 20 | 18, 19 | rhmf 20485 | . . . 4 ⊢ ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) | 
| 21 | ffn 6736 | . . . 4 ⊢ ((1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 22 | fvelrnb 6969 | . . . 4 ⊢ ((1o eval 𝑅) Fn (Base‘(Poly1‘𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) | |
| 23 | 15, 20, 21, 22 | 4syl 19 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) | 
| 24 | 10, 23 | mpbid 232 | . 2 ⊢ (𝐹 ∈ 𝐸 → ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹) | 
| 25 | eqid 2737 | . . . . . 6 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
| 26 | 25, 2, 3, 12, 18 | evl1val 22333 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | 
| 27 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 28 | 25, 16, 27, 3 | evl1rhm 22336 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) | 
| 29 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 30 | 17, 29 | rhmf 20485 | . . . . . . . 8 ⊢ ((eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵)) → (eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) | 
| 31 | ffn 6736 | . . . . . . . 8 ⊢ ((eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵)) → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 32 | 28, 30, 31 | 3syl 18 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) | 
| 33 | fnfvelrn 7100 | . . . . . . 7 ⊢ (((eval1‘𝑅) Fn (Base‘(Poly1‘𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) | |
| 34 | 32, 33 | sylan 580 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) | 
| 35 | pf1rcl.q | . . . . . 6 ⊢ 𝑄 = ran (eval1‘𝑅) | |
| 36 | 34, 35 | eleqtrrdi 2852 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ 𝑄) | 
| 37 | 26, 36 | eqeltrrd 2842 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) | 
| 38 | coeq1 5868 | . . . . 5 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 39 | 38 | eleq1d 2826 | . . . 4 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) | 
| 40 | 37, 39 | syl5ibcom 245 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) | 
| 41 | 40 | rexlimdva 3155 | . 2 ⊢ (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) | 
| 42 | 8, 24, 41 | sylc 65 | 1 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 {csn 4626 ↦ cmpt 5225 × cxp 5683 ran crn 5686 ∘ ccom 5689 Oncon0 6384 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 1oc1o 8499 ↑m cmap 8866 Basecbs 17247 ↑s cpws 17491 CRingccrg 20231 RingHom crh 20469 SubRingcsubrg 20569 mPoly cmpl 21926 evalSub ces 22096 eval cevl 22097 Poly1cpl1 22178 eval1ce1 22318 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-evl 22099 df-psr1 22181 df-ply1 22183 df-evl1 22320 | 
| This theorem is referenced by: pf1ind 22359 | 
| Copyright terms: Public domain | W3C validator |