MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 22376
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1o eval 𝑅)
2 eqid 2740 . . . . . . 7 (1o eval 𝑅) = (1o eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 22142 . . . . . 6 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
54rneqi 5962 . . . . 5 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
61, 5eqtri 2768 . . . 4 𝐸 = ran ((1o evalSub 𝑅)‘𝐵)
76mpfrcl 22132 . . 3 (𝐹𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1143 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1eleqtrdi 2854 . . 3 (𝐹𝐸𝐹 ∈ ran (1o eval 𝑅))
11 1on 8534 . . . . 5 1o ∈ On
12 eqid 2740 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
13 eqid 2740 . . . . . 6 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
142, 3, 12, 13evlrhm 22143 . . . . 5 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
1511, 8, 14sylancr 586 . . . 4 (𝐹𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
16 eqid 2740 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2740 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1816, 17ply1bas 22217 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
19 eqid 2740 . . . . 5 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
2018, 19rhmf 20511 . . . 4 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
21 ffn 6747 . . . 4 ((1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
22 fvelrnb 6982 . . . 4 ((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2315, 20, 21, 224syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2410, 23mpbid 232 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)
25 eqid 2740 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2625, 2, 3, 12, 18evl1val 22354 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
27 eqid 2740 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2825, 16, 27, 3evl1rhm 22357 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
29 eqid 2740 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3017, 29rhmf 20511 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
31 ffn 6747 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3228, 30, 313syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
33 fnfvelrn 7114 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3432, 33sylan 579 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
35 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3634, 35eleqtrrdi 2855 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3726, 36eqeltrrd 2845 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
38 coeq1 5882 . . . . 5 (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3938eleq1d 2829 . . . 4 (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4037, 39syl5ibcom 245 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4140rexlimdva 3161 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
428, 24, 41sylc 65 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  {csn 4648  cmpt 5249   × cxp 5698  ran crn 5701  ccom 5704  Oncon0 6395   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Basecbs 17258  s cpws 17506  CRingccrg 20261   RingHom crh 20495  SubRingcsubrg 20595   mPoly cmpl 21949   evalSub ces 22119   eval cevl 22120  Poly1cpl1 22199  eval1ce1 22339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-ply1 22204  df-evl1 22341
This theorem is referenced by:  pf1ind  22380
  Copyright terms: Public domain W3C validator