| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpfpf1 | Structured version Visualization version GIF version | ||
| Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
| pf1f.b | ⊢ 𝐵 = (Base‘𝑅) |
| mpfpf1.q | ⊢ 𝐸 = ran (1o eval 𝑅) |
| Ref | Expression |
|---|---|
| mpfpf1 | ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfpf1.q | . . . . 5 ⊢ 𝐸 = ran (1o eval 𝑅) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 3 | pf1f.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 2, 3 | evlval 22028 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
| 5 | 4 | rneqi 5877 | . . . . 5 ⊢ ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵) |
| 6 | 1, 5 | eqtri 2754 | . . . 4 ⊢ 𝐸 = ran ((1o evalSub 𝑅)‘𝐵) |
| 7 | 6 | mpfrcl 22018 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅))) |
| 8 | 7 | simp2d 1143 | . 2 ⊢ (𝐹 ∈ 𝐸 → 𝑅 ∈ CRing) |
| 9 | id 22 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ 𝐸) | |
| 10 | 9, 1 | eleqtrdi 2841 | . . 3 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ ran (1o eval 𝑅)) |
| 11 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 12 | eqid 2731 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
| 14 | 2, 3, 12, 13 | evlrhm 22029 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
| 15 | 11, 8, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 17 | eqid 2731 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 18 | 16, 17 | ply1bas 22105 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
| 19 | eqid 2731 | . . . . 5 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
| 20 | 18, 19 | rhmf 20400 | . . . 4 ⊢ ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
| 21 | ffn 6651 | . . . 4 ⊢ ((1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 22 | fvelrnb 6882 | . . . 4 ⊢ ((1o eval 𝑅) Fn (Base‘(Poly1‘𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) | |
| 23 | 15, 20, 21, 22 | 4syl 19 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) |
| 24 | 10, 23 | mpbid 232 | . 2 ⊢ (𝐹 ∈ 𝐸 → ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹) |
| 25 | eqid 2731 | . . . . . 6 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
| 26 | 25, 2, 3, 12, 18 | evl1val 22242 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 28 | 25, 16, 27, 3 | evl1rhm 22245 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) |
| 29 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 30 | 17, 29 | rhmf 20400 | . . . . . . . 8 ⊢ ((eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵)) → (eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 31 | ffn 6651 | . . . . . . . 8 ⊢ ((eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵)) → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 32 | 28, 30, 31 | 3syl 18 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) |
| 33 | fnfvelrn 7013 | . . . . . . 7 ⊢ (((eval1‘𝑅) Fn (Base‘(Poly1‘𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) | |
| 34 | 32, 33 | sylan 580 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) |
| 35 | pf1rcl.q | . . . . . 6 ⊢ 𝑄 = ran (eval1‘𝑅) | |
| 36 | 34, 35 | eleqtrrdi 2842 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ 𝑄) |
| 37 | 26, 36 | eqeltrrd 2832 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| 38 | coeq1 5797 | . . . . 5 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 39 | 38 | eleq1d 2816 | . . . 4 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 40 | 37, 39 | syl5ibcom 245 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 41 | 40 | rexlimdva 3133 | . 2 ⊢ (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 42 | 8, 24, 41 | sylc 65 | 1 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 {csn 4576 ↦ cmpt 5172 × cxp 5614 ran crn 5617 ∘ ccom 5620 Oncon0 6306 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 Basecbs 17117 ↑s cpws 17347 CRingccrg 20150 RingHom crh 20385 SubRingcsubrg 20482 mPoly cmpl 21841 evalSub ces 22005 eval cevl 22006 Poly1cpl1 22087 eval1ce1 22227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-lsp 20903 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-evls 22007 df-evl 22008 df-psr1 22090 df-ply1 22092 df-evl1 22229 |
| This theorem is referenced by: pf1ind 22268 |
| Copyright terms: Public domain | W3C validator |