| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpfpf1 | Structured version Visualization version GIF version | ||
| Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
| pf1f.b | ⊢ 𝐵 = (Base‘𝑅) |
| mpfpf1.q | ⊢ 𝐸 = ran (1o eval 𝑅) |
| Ref | Expression |
|---|---|
| mpfpf1 | ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfpf1.q | . . . . 5 ⊢ 𝐸 = ran (1o eval 𝑅) | |
| 2 | eqid 2733 | . . . . . . 7 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 3 | pf1f.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 2, 3 | evlval 22031 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
| 5 | 4 | rneqi 5881 | . . . . 5 ⊢ ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵) |
| 6 | 1, 5 | eqtri 2756 | . . . 4 ⊢ 𝐸 = ran ((1o evalSub 𝑅)‘𝐵) |
| 7 | 6 | mpfrcl 22021 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅))) |
| 8 | 7 | simp2d 1143 | . 2 ⊢ (𝐹 ∈ 𝐸 → 𝑅 ∈ CRing) |
| 9 | id 22 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ 𝐸) | |
| 10 | 9, 1 | eleqtrdi 2843 | . . 3 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ ran (1o eval 𝑅)) |
| 11 | 1on 8403 | . . . . 5 ⊢ 1o ∈ On | |
| 12 | eqid 2733 | . . . . . 6 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 13 | eqid 2733 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
| 14 | 2, 3, 12, 13 | evlrhm 22032 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
| 15 | 11, 8, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
| 16 | eqid 2733 | . . . . . 6 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 17 | eqid 2733 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 18 | 16, 17 | ply1bas 22108 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
| 19 | eqid 2733 | . . . . 5 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
| 20 | 18, 19 | rhmf 20404 | . . . 4 ⊢ ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
| 21 | ffn 6656 | . . . 4 ⊢ ((1o eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 22 | fvelrnb 6888 | . . . 4 ⊢ ((1o eval 𝑅) Fn (Base‘(Poly1‘𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) | |
| 23 | 15, 20, 21, 22 | 4syl 19 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)) |
| 24 | 10, 23 | mpbid 232 | . 2 ⊢ (𝐹 ∈ 𝐸 → ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹) |
| 25 | eqid 2733 | . . . . . 6 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
| 26 | 25, 2, 3, 12, 18 | evl1val 22245 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
| 27 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 28 | 25, 16, 27, 3 | evl1rhm 22248 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) |
| 29 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 30 | 17, 29 | rhmf 20404 | . . . . . . . 8 ⊢ ((eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵)) → (eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 31 | ffn 6656 | . . . . . . . 8 ⊢ ((eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵)) → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) | |
| 32 | 28, 30, 31 | 3syl 18 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) |
| 33 | fnfvelrn 7019 | . . . . . . 7 ⊢ (((eval1‘𝑅) Fn (Base‘(Poly1‘𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) | |
| 34 | 32, 33 | sylan 580 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) |
| 35 | pf1rcl.q | . . . . . 6 ⊢ 𝑄 = ran (eval1‘𝑅) | |
| 36 | 34, 35 | eleqtrrdi 2844 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ 𝑄) |
| 37 | 26, 36 | eqeltrrd 2834 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| 38 | coeq1 5801 | . . . . 5 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
| 39 | 38 | eleq1d 2818 | . . . 4 ⊢ (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 40 | 37, 39 | syl5ibcom 245 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 41 | 40 | rexlimdva 3134 | . 2 ⊢ (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)) |
| 42 | 8, 24, 41 | sylc 65 | 1 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 {csn 4575 ↦ cmpt 5174 × cxp 5617 ran crn 5620 ∘ ccom 5623 Oncon0 6311 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1oc1o 8384 ↑m cmap 8756 Basecbs 17122 ↑s cpws 17352 CRingccrg 20154 RingHom crh 20389 SubRingcsubrg 20486 mPoly cmpl 21845 evalSub ces 22008 eval cevl 22009 Poly1cpl1 22090 eval1ce1 22230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-lsp 20907 df-assa 21792 df-asp 21793 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-evls 22010 df-evl 22011 df-psr1 22093 df-ply1 22095 df-evl1 22232 |
| This theorem is referenced by: pf1ind 22271 |
| Copyright terms: Public domain | W3C validator |