MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 22294
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1o eval 𝑅)
2 eqid 2736 . . . . . . 7 (1o eval 𝑅) = (1o eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 22058 . . . . . 6 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
54rneqi 5922 . . . . 5 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
61, 5eqtri 2759 . . . 4 𝐸 = ran ((1o evalSub 𝑅)‘𝐵)
76mpfrcl 22048 . . 3 (𝐹𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1143 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1eleqtrdi 2845 . . 3 (𝐹𝐸𝐹 ∈ ran (1o eval 𝑅))
11 1on 8497 . . . . 5 1o ∈ On
12 eqid 2736 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
13 eqid 2736 . . . . . 6 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
142, 3, 12, 13evlrhm 22059 . . . . 5 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
1511, 8, 14sylancr 587 . . . 4 (𝐹𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
16 eqid 2736 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2736 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1816, 17ply1bas 22135 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
19 eqid 2736 . . . . 5 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
2018, 19rhmf 20450 . . . 4 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
21 ffn 6711 . . . 4 ((1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
22 fvelrnb 6944 . . . 4 ((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2315, 20, 21, 224syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2410, 23mpbid 232 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)
25 eqid 2736 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2625, 2, 3, 12, 18evl1val 22272 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
27 eqid 2736 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2825, 16, 27, 3evl1rhm 22275 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
29 eqid 2736 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3017, 29rhmf 20450 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
31 ffn 6711 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3228, 30, 313syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
33 fnfvelrn 7075 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3432, 33sylan 580 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
35 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3634, 35eleqtrrdi 2846 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3726, 36eqeltrrd 2836 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
38 coeq1 5842 . . . . 5 (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3938eleq1d 2820 . . . 4 (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4037, 39syl5ibcom 245 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4140rexlimdva 3142 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
428, 24, 41sylc 65 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  {csn 4606  cmpt 5206   × cxp 5657  ran crn 5660  ccom 5663  Oncon0 6357   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1oc1o 8478  m cmap 8845  Basecbs 17233  s cpws 17465  CRingccrg 20199   RingHom crh 20434  SubRingcsubrg 20534   mPoly cmpl 21871   evalSub ces 22035   eval cevl 22036  Poly1cpl1 22117  eval1ce1 22257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-ply1 22122  df-evl1 22259
This theorem is referenced by:  pf1ind  22298
  Copyright terms: Public domain W3C validator