MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 20975
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1o eval 𝑅)
2 eqid 2798 . . . . . . 7 (1o eval 𝑅) = (1o eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 20767 . . . . . 6 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
54rneqi 5771 . . . . 5 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
61, 5eqtri 2821 . . . 4 𝐸 = ran ((1o evalSub 𝑅)‘𝐵)
76mpfrcl 20757 . . 3 (𝐹𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1140 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1eleqtrdi 2900 . . 3 (𝐹𝐸𝐹 ∈ ran (1o eval 𝑅))
11 1on 8092 . . . . 5 1o ∈ On
12 eqid 2798 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
13 eqid 2798 . . . . . 6 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
142, 3, 12, 13evlrhm 20768 . . . . 5 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
1511, 8, 14sylancr 590 . . . 4 (𝐹𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
16 eqid 2798 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2798 . . . . . 6 (PwSer1𝑅) = (PwSer1𝑅)
18 eqid 2798 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1916, 17, 18ply1bas 20824 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
20 eqid 2798 . . . . 5 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
2119, 20rhmf 19474 . . . 4 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
22 ffn 6487 . . . 4 ((1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
23 fvelrnb 6701 . . . 4 ((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2415, 21, 22, 234syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2510, 24mpbid 235 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)
26 eqid 2798 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2726, 2, 3, 12, 19evl1val 20953 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2798 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2926, 16, 28, 3evl1rhm 20956 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
30 eqid 2798 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3118, 30rhmf 19474 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
32 ffn 6487 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3329, 31, 323syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
34 fnfvelrn 6825 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3533, 34sylan 583 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
36 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3735, 36eleqtrrdi 2901 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3827, 37eqeltrrd 2891 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
39 coeq1 5692 . . . . 5 (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4039eleq1d 2874 . . . 4 (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4138, 40syl5ibcom 248 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4241rexlimdva 3243 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
438, 25, 42sylc 65 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  {csn 4525  cmpt 5110   × cxp 5517  ran crn 5520  ccom 5523  Oncon0 6159   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1oc1o 8078  m cmap 8389  Basecbs 16475  s cpws 16712  CRingccrg 19291   RingHom crh 19460  SubRingcsubrg 19524   mPoly cmpl 20591   evalSub ces 20743   eval cevl 20744  PwSer1cps1 20804  Poly1cpl1 20806  eval1ce1 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-ply1 20811  df-evl1 20940
This theorem is referenced by:  pf1ind  20979
  Copyright terms: Public domain W3C validator