MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsvarsrng Structured version   Visualization version   GIF version

Theorem evlsvarsrng 22123
Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.)
Hypotheses
Ref Expression
evlsvarsrng.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvarsrng.o 𝑂 = (𝐼 eval 𝑆)
evlsvarsrng.v 𝑉 = (𝐼 mVar 𝑈)
evlsvarsrng.u 𝑈 = (𝑆s 𝑅)
evlsvarsrng.b 𝐵 = (Base‘𝑆)
evlsvarsrng.i (𝜑𝐼𝐴)
evlsvarsrng.s (𝜑𝑆 ∈ CRing)
evlsvarsrng.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvarsrng.x (𝜑𝑋𝐼)
Assertion
Ref Expression
evlsvarsrng (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑂‘(𝑉𝑋)))

Proof of Theorem evlsvarsrng
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 evlsvarsrng.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 evlsvarsrng.v . . 3 𝑉 = (𝐼 mVar 𝑈)
3 evlsvarsrng.u . . 3 𝑈 = (𝑆s 𝑅)
4 evlsvarsrng.b . . 3 𝐵 = (Base‘𝑆)
5 evlsvarsrng.i . . 3 (𝜑𝐼𝐴)
6 evlsvarsrng.s . . 3 (𝜑𝑆 ∈ CRing)
7 evlsvarsrng.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 evlsvarsrng.x . . 3 (𝜑𝑋𝐼)
91, 2, 3, 4, 5, 6, 7, 8evlsvar 22114 . 2 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
10 evlsvarsrng.o . . . . . 6 𝑂 = (𝐼 eval 𝑆)
1110, 4evlval 22119 . . . . 5 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵)
1211a1i 11 . . . 4 (𝜑𝑂 = ((𝐼 evalSub 𝑆)‘𝐵))
1312fveq1d 6908 . . 3 (𝜑 → (𝑂‘(𝑉𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉𝑋)))
142a1i 11 . . . . . 6 (𝜑𝑉 = (𝐼 mVar 𝑈))
15 eqid 2737 . . . . . . 7 (𝐼 mVar 𝑆) = (𝐼 mVar 𝑆)
1615, 5, 7, 3subrgmvr 22051 . . . . . 6 (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar 𝑈))
174ressid 17290 . . . . . . . . 9 (𝑆 ∈ CRing → (𝑆s 𝐵) = 𝑆)
186, 17syl 17 . . . . . . . 8 (𝜑 → (𝑆s 𝐵) = 𝑆)
1918eqcomd 2743 . . . . . . 7 (𝜑𝑆 = (𝑆s 𝐵))
2019oveq2d 7447 . . . . . 6 (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar (𝑆s 𝐵)))
2114, 16, 203eqtr2d 2783 . . . . 5 (𝜑𝑉 = (𝐼 mVar (𝑆s 𝐵)))
2221fveq1d 6908 . . . 4 (𝜑 → (𝑉𝑋) = ((𝐼 mVar (𝑆s 𝐵))‘𝑋))
2322fveq2d 6910 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆s 𝐵))‘𝑋)))
24 eqid 2737 . . . 4 ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵)
25 eqid 2737 . . . 4 (𝐼 mVar (𝑆s 𝐵)) = (𝐼 mVar (𝑆s 𝐵))
26 eqid 2737 . . . 4 (𝑆s 𝐵) = (𝑆s 𝐵)
27 crngring 20242 . . . . 5 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
284subrgid 20573 . . . . 5 (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆))
296, 27, 283syl 18 . . . 4 (𝜑𝐵 ∈ (SubRing‘𝑆))
3024, 25, 26, 4, 5, 6, 29, 8evlsvar 22114 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆s 𝐵))‘𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3113, 23, 303eqtrrd 2782 . 2 (𝜑 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)) = (𝑂‘(𝑉𝑋)))
329, 31eqtrd 2777 1 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑂‘(𝑉𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cmpt 5225  cfv 6561  (class class class)co 7431  m cmap 8866  Basecbs 17247  s cress 17274  Ringcrg 20230  CRingccrg 20231  SubRingcsubrg 20569   mVar cmvr 21925   evalSub ces 22096   eval cevl 22097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-evls 22098  df-evl 22099
This theorem is referenced by:  evlvar  22124  evls1var  22342
  Copyright terms: Public domain W3C validator