![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlsvarsrng | Structured version Visualization version GIF version |
Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
Ref | Expression |
---|---|
evlsvarsrng.q | β’ π = ((πΌ evalSub π)βπ ) |
evlsvarsrng.o | β’ π = (πΌ eval π) |
evlsvarsrng.v | β’ π = (πΌ mVar π) |
evlsvarsrng.u | β’ π = (π βΎs π ) |
evlsvarsrng.b | β’ π΅ = (Baseβπ) |
evlsvarsrng.i | β’ (π β πΌ β π΄) |
evlsvarsrng.s | β’ (π β π β CRing) |
evlsvarsrng.r | β’ (π β π β (SubRingβπ)) |
evlsvarsrng.x | β’ (π β π β πΌ) |
Ref | Expression |
---|---|
evlsvarsrng | β’ (π β (πβ(πβπ)) = (πβ(πβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvarsrng.q | . . 3 β’ π = ((πΌ evalSub π)βπ ) | |
2 | evlsvarsrng.v | . . 3 β’ π = (πΌ mVar π) | |
3 | evlsvarsrng.u | . . 3 β’ π = (π βΎs π ) | |
4 | evlsvarsrng.b | . . 3 β’ π΅ = (Baseβπ) | |
5 | evlsvarsrng.i | . . 3 β’ (π β πΌ β π΄) | |
6 | evlsvarsrng.s | . . 3 β’ (π β π β CRing) | |
7 | evlsvarsrng.r | . . 3 β’ (π β π β (SubRingβπ)) | |
8 | evlsvarsrng.x | . . 3 β’ (π β π β πΌ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | evlsvar 21873 | . 2 β’ (π β (πβ(πβπ)) = (π β (π΅ βm πΌ) β¦ (πβπ))) |
10 | evlsvarsrng.o | . . . . . 6 β’ π = (πΌ eval π) | |
11 | 10, 4 | evlval 21878 | . . . . 5 β’ π = ((πΌ evalSub π)βπ΅) |
12 | 11 | a1i 11 | . . . 4 β’ (π β π = ((πΌ evalSub π)βπ΅)) |
13 | 12 | fveq1d 6894 | . . 3 β’ (π β (πβ(πβπ)) = (((πΌ evalSub π)βπ΅)β(πβπ))) |
14 | 2 | a1i 11 | . . . . . 6 β’ (π β π = (πΌ mVar π)) |
15 | eqid 2731 | . . . . . . 7 β’ (πΌ mVar π) = (πΌ mVar π) | |
16 | 15, 5, 7, 3 | subrgmvr 21808 | . . . . . 6 β’ (π β (πΌ mVar π) = (πΌ mVar π)) |
17 | 4 | ressid 17194 | . . . . . . . . 9 β’ (π β CRing β (π βΎs π΅) = π) |
18 | 6, 17 | syl 17 | . . . . . . . 8 β’ (π β (π βΎs π΅) = π) |
19 | 18 | eqcomd 2737 | . . . . . . 7 β’ (π β π = (π βΎs π΅)) |
20 | 19 | oveq2d 7428 | . . . . . 6 β’ (π β (πΌ mVar π) = (πΌ mVar (π βΎs π΅))) |
21 | 14, 16, 20 | 3eqtr2d 2777 | . . . . 5 β’ (π β π = (πΌ mVar (π βΎs π΅))) |
22 | 21 | fveq1d 6894 | . . . 4 β’ (π β (πβπ) = ((πΌ mVar (π βΎs π΅))βπ)) |
23 | 22 | fveq2d 6896 | . . 3 β’ (π β (((πΌ evalSub π)βπ΅)β(πβπ)) = (((πΌ evalSub π)βπ΅)β((πΌ mVar (π βΎs π΅))βπ))) |
24 | eqid 2731 | . . . 4 β’ ((πΌ evalSub π)βπ΅) = ((πΌ evalSub π)βπ΅) | |
25 | eqid 2731 | . . . 4 β’ (πΌ mVar (π βΎs π΅)) = (πΌ mVar (π βΎs π΅)) | |
26 | eqid 2731 | . . . 4 β’ (π βΎs π΅) = (π βΎs π΅) | |
27 | crngring 20140 | . . . . 5 β’ (π β CRing β π β Ring) | |
28 | 4 | subrgid 20464 | . . . . 5 β’ (π β Ring β π΅ β (SubRingβπ)) |
29 | 6, 27, 28 | 3syl 18 | . . . 4 β’ (π β π΅ β (SubRingβπ)) |
30 | 24, 25, 26, 4, 5, 6, 29, 8 | evlsvar 21873 | . . 3 β’ (π β (((πΌ evalSub π)βπ΅)β((πΌ mVar (π βΎs π΅))βπ)) = (π β (π΅ βm πΌ) β¦ (πβπ))) |
31 | 13, 23, 30 | 3eqtrrd 2776 | . 2 β’ (π β (π β (π΅ βm πΌ) β¦ (πβπ)) = (πβ(πβπ))) |
32 | 9, 31 | eqtrd 2771 | 1 β’ (π β (πβ(πβπ)) = (πβ(πβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β¦ cmpt 5232 βcfv 6544 (class class class)co 7412 βm cmap 8823 Basecbs 17149 βΎs cress 17178 Ringcrg 20128 CRingccrg 20129 SubRingcsubrg 20458 mVar cmvr 21678 evalSub ces 21853 eval cevl 21854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-ofr 7674 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-srg 20082 df-ring 20130 df-cring 20131 df-rhm 20364 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-lsp 20728 df-assa 21628 df-asp 21629 df-ascl 21630 df-psr 21682 df-mvr 21683 df-mpl 21684 df-evls 21855 df-evl 21856 |
This theorem is referenced by: evlvar 21883 evls1var 22078 |
Copyright terms: Public domain | W3C validator |