| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlsvarsrng | Structured version Visualization version GIF version | ||
| Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
| Ref | Expression |
|---|---|
| evlsvarsrng.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsvarsrng.o | ⊢ 𝑂 = (𝐼 eval 𝑆) |
| evlsvarsrng.v | ⊢ 𝑉 = (𝐼 mVar 𝑈) |
| evlsvarsrng.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsvarsrng.b | ⊢ 𝐵 = (Base‘𝑆) |
| evlsvarsrng.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| evlsvarsrng.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsvarsrng.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsvarsrng.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| evlsvarsrng | ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑂‘(𝑉‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarsrng.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | evlsvarsrng.v | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑈) | |
| 3 | evlsvarsrng.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 4 | evlsvarsrng.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | evlsvarsrng.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
| 6 | evlsvarsrng.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | evlsvarsrng.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | evlsvarsrng.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | evlsvar 22013 | . 2 ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
| 10 | evlsvarsrng.o | . . . . . 6 ⊢ 𝑂 = (𝐼 eval 𝑆) | |
| 11 | 10, 4 | evlval 22018 | . . . . 5 ⊢ 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵) |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵)) |
| 13 | 12 | fveq1d 6828 | . . 3 ⊢ (𝜑 → (𝑂‘(𝑉‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉‘𝑋))) |
| 14 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝑈)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (𝐼 mVar 𝑆) = (𝐼 mVar 𝑆) | |
| 16 | 15, 5, 7, 3 | subrgmvr 21956 | . . . . . 6 ⊢ (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar 𝑈)) |
| 17 | 4 | ressid 17173 | . . . . . . . . 9 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐵) = 𝑆) |
| 18 | 6, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾s 𝐵) = 𝑆) |
| 19 | 18 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐵)) |
| 20 | 19 | oveq2d 7369 | . . . . . 6 ⊢ (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar (𝑆 ↾s 𝐵))) |
| 21 | 14, 16, 20 | 3eqtr2d 2770 | . . . . 5 ⊢ (𝜑 → 𝑉 = (𝐼 mVar (𝑆 ↾s 𝐵))) |
| 22 | 21 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → (𝑉‘𝑋) = ((𝐼 mVar (𝑆 ↾s 𝐵))‘𝑋)) |
| 23 | 22 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉‘𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆 ↾s 𝐵))‘𝑋))) |
| 24 | eqid 2729 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵) | |
| 25 | eqid 2729 | . . . 4 ⊢ (𝐼 mVar (𝑆 ↾s 𝐵)) = (𝐼 mVar (𝑆 ↾s 𝐵)) | |
| 26 | eqid 2729 | . . . 4 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 27 | crngring 20148 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 28 | 4 | subrgid 20476 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆)) |
| 29 | 6, 27, 28 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
| 30 | 24, 25, 26, 4, 5, 6, 29, 8 | evlsvar 22013 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆 ↾s 𝐵))‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
| 31 | 13, 23, 30 | 3eqtrrd 2769 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋)) = (𝑂‘(𝑉‘𝑋))) |
| 32 | 9, 31 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑂‘(𝑉‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Basecbs 17138 ↾s cress 17159 Ringcrg 20136 CRingccrg 20137 SubRingcsubrg 20472 mVar cmvr 21830 evalSub ces 21995 eval cevl 21996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-evls 21997 df-evl 21998 |
| This theorem is referenced by: evlvar 22023 evls1var 22241 |
| Copyright terms: Public domain | W3C validator |