MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsvarsrng Structured version   Visualization version   GIF version

Theorem evlsvarsrng 20311
Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.)
Hypotheses
Ref Expression
evlsvarsrng.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvarsrng.o 𝑂 = (𝐼 eval 𝑆)
evlsvarsrng.v 𝑉 = (𝐼 mVar 𝑈)
evlsvarsrng.u 𝑈 = (𝑆s 𝑅)
evlsvarsrng.b 𝐵 = (Base‘𝑆)
evlsvarsrng.i (𝜑𝐼𝐴)
evlsvarsrng.s (𝜑𝑆 ∈ CRing)
evlsvarsrng.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvarsrng.x (𝜑𝑋𝐼)
Assertion
Ref Expression
evlsvarsrng (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑂‘(𝑉𝑋)))

Proof of Theorem evlsvarsrng
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 evlsvarsrng.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 evlsvarsrng.v . . 3 𝑉 = (𝐼 mVar 𝑈)
3 evlsvarsrng.u . . 3 𝑈 = (𝑆s 𝑅)
4 evlsvarsrng.b . . 3 𝐵 = (Base‘𝑆)
5 evlsvarsrng.i . . 3 (𝜑𝐼𝐴)
6 evlsvarsrng.s . . 3 (𝜑𝑆 ∈ CRing)
7 evlsvarsrng.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
8 evlsvarsrng.x . . 3 (𝜑𝑋𝐼)
91, 2, 3, 4, 5, 6, 7, 8evlsvar 20302 . 2 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
10 evlsvarsrng.o . . . . . 6 𝑂 = (𝐼 eval 𝑆)
1110, 4evlval 20307 . . . . 5 𝑂 = ((𝐼 evalSub 𝑆)‘𝐵)
1211a1i 11 . . . 4 (𝜑𝑂 = ((𝐼 evalSub 𝑆)‘𝐵))
1312fveq1d 6671 . . 3 (𝜑 → (𝑂‘(𝑉𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉𝑋)))
142a1i 11 . . . . . 6 (𝜑𝑉 = (𝐼 mVar 𝑈))
15 eqid 2821 . . . . . . 7 (𝐼 mVar 𝑆) = (𝐼 mVar 𝑆)
1615, 5, 7, 3subrgmvr 20241 . . . . . 6 (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar 𝑈))
174ressid 16558 . . . . . . . . 9 (𝑆 ∈ CRing → (𝑆s 𝐵) = 𝑆)
186, 17syl 17 . . . . . . . 8 (𝜑 → (𝑆s 𝐵) = 𝑆)
1918eqcomd 2827 . . . . . . 7 (𝜑𝑆 = (𝑆s 𝐵))
2019oveq2d 7171 . . . . . 6 (𝜑 → (𝐼 mVar 𝑆) = (𝐼 mVar (𝑆s 𝐵)))
2114, 16, 203eqtr2d 2862 . . . . 5 (𝜑𝑉 = (𝐼 mVar (𝑆s 𝐵)))
2221fveq1d 6671 . . . 4 (𝜑 → (𝑉𝑋) = ((𝐼 mVar (𝑆s 𝐵))‘𝑋))
2322fveq2d 6673 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘(𝑉𝑋)) = (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆s 𝐵))‘𝑋)))
24 eqid 2821 . . . 4 ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵)
25 eqid 2821 . . . 4 (𝐼 mVar (𝑆s 𝐵)) = (𝐼 mVar (𝑆s 𝐵))
26 eqid 2821 . . . 4 (𝑆s 𝐵) = (𝑆s 𝐵)
27 crngring 19307 . . . . 5 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
284subrgid 19536 . . . . 5 (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆))
296, 27, 283syl 18 . . . 4 (𝜑𝐵 ∈ (SubRing‘𝑆))
3024, 25, 26, 4, 5, 6, 29, 8evlsvar 20302 . . 3 (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((𝐼 mVar (𝑆s 𝐵))‘𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3113, 23, 303eqtrrd 2861 . 2 (𝜑 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)) = (𝑂‘(𝑉𝑋)))
329, 31eqtrd 2856 1 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑂‘(𝑉𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cmpt 5145  cfv 6354  (class class class)co 7155  m cmap 8405  Basecbs 16482  s cress 16483  Ringcrg 19296  CRingccrg 19297  SubRingcsubrg 19530   mVar cmvr 20131   evalSub ces 20283   eval cevl 20284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-srg 19255  df-ring 19298  df-cring 19299  df-rnghom 19466  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-assa 20084  df-asp 20085  df-ascl 20086  df-psr 20135  df-mvr 20136  df-mpl 20137  df-evls 20285  df-evl 20286
This theorem is referenced by:  evlvar  20312  evls1var  20500
  Copyright terms: Public domain W3C validator