MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem Structured version   Visualization version   GIF version

Theorem mbfmullem 25090
Description: Lemma for mbfmul 25091. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmullem (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmullem
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfmul.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
31, 2mbfi1flim 25088 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
4 mbfmul.2 . . 3 (𝜑𝐺 ∈ MblFn)
5 mbfmul.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
64, 5mbfi1flim 25088 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))
7 exdistrv 1959 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))))
81adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹 ∈ MblFn)
94adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺 ∈ MblFn)
102adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹:𝐴⟶ℝ)
115adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺:𝐴⟶ℝ)
12 simprll 777 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑓:ℕ⟶dom ∫1)
13 simprlr 778 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦))
14 fveq2 6842 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑓𝑛)‘𝑦) = ((𝑓𝑛)‘𝑥))
1514mpteq2dv 5207 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)))
16 fveq2 6842 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
1716fveq1d 6844 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑚)‘𝑥))
1817cbvmptv 5218 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥))
1915, 18eqtrdi 2792 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)))
20 fveq2 6842 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
2119, 20breq12d 5118 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥)))
2221rspccva 3580 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
2313, 22sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
24 simprrl 779 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑔:ℕ⟶dom ∫1)
25 simprrr 780 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))
26 fveq2 6842 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑔𝑛)‘𝑦) = ((𝑔𝑛)‘𝑥))
2726mpteq2dv 5207 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)))
28 fveq2 6842 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2928fveq1d 6844 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑔𝑛)‘𝑥) = ((𝑔𝑚)‘𝑥))
3029cbvmptv 5218 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥))
3127, 30eqtrdi 2792 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)))
32 fveq2 6842 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
3331, 32breq12d 5118 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥)))
3433rspccva 3580 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
3525, 34sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
368, 9, 10, 11, 12, 23, 24, 35mbfmullem2 25089 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → (𝐹f · 𝐺) ∈ MblFn)
3736ex 413 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
3837exlimdvv 1937 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
397, 38biimtrrid 242 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
403, 6, 39mp2and 697 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  wral 3064   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cr 11050   · cmul 11056  cn 12153  cli 15366  MblFncmbf 24978  1citg1 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-0p 25034
This theorem is referenced by:  mbfmul  25091
  Copyright terms: Public domain W3C validator