MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem Structured version   Visualization version   GIF version

Theorem mbfmullem 25602
Description: Lemma for mbfmul 25603. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmullem (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmullem
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfmul.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
31, 2mbfi1flim 25600 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
4 mbfmul.2 . . 3 (𝜑𝐺 ∈ MblFn)
5 mbfmul.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
64, 5mbfi1flim 25600 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))
7 exdistrv 1955 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))))
81adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹 ∈ MblFn)
94adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺 ∈ MblFn)
102adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹:𝐴⟶ℝ)
115adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺:𝐴⟶ℝ)
12 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑓:ℕ⟶dom ∫1)
13 simprlr 779 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦))
14 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑓𝑛)‘𝑦) = ((𝑓𝑛)‘𝑥))
1514mpteq2dv 5196 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)))
16 fveq2 6840 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
1716fveq1d 6842 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑚)‘𝑥))
1817cbvmptv 5206 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥))
1915, 18eqtrdi 2780 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)))
20 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
2119, 20breq12d 5115 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥)))
2221rspccva 3584 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
2313, 22sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
24 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑔:ℕ⟶dom ∫1)
25 simprrr 781 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))
26 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑔𝑛)‘𝑦) = ((𝑔𝑛)‘𝑥))
2726mpteq2dv 5196 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)))
28 fveq2 6840 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2928fveq1d 6842 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑔𝑛)‘𝑥) = ((𝑔𝑚)‘𝑥))
3029cbvmptv 5206 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥))
3127, 30eqtrdi 2780 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)))
32 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
3331, 32breq12d 5115 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥)))
3433rspccva 3584 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
3525, 34sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
368, 9, 10, 11, 12, 23, 24, 35mbfmullem2 25601 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → (𝐹f · 𝐺) ∈ MblFn)
3736ex 412 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
3837exlimdvv 1934 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
397, 38biimtrrid 243 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
403, 6, 39mp2and 699 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wral 3044   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cr 11043   · cmul 11049  cn 12162  cli 15426  MblFncmbf 25491  1citg1 25492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-0p 25547
This theorem is referenced by:  mbfmul  25603
  Copyright terms: Public domain W3C validator