MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem Structured version   Visualization version   GIF version

Theorem mbfmullem 25624
Description: Lemma for mbfmul 25625. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmullem (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmullem
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfmul.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
31, 2mbfi1flim 25622 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
4 mbfmul.2 . . 3 (𝜑𝐺 ∈ MblFn)
5 mbfmul.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
64, 5mbfi1flim 25622 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))
7 exdistrv 1955 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))))
81adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹 ∈ MblFn)
94adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺 ∈ MblFn)
102adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹:𝐴⟶ℝ)
115adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺:𝐴⟶ℝ)
12 simprll 778 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑓:ℕ⟶dom ∫1)
13 simprlr 779 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦))
14 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑓𝑛)‘𝑦) = ((𝑓𝑛)‘𝑥))
1514mpteq2dv 5186 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)))
16 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
1716fveq1d 6824 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑚)‘𝑥))
1817cbvmptv 5196 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥))
1915, 18eqtrdi 2780 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)))
20 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
2119, 20breq12d 5105 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥)))
2221rspccva 3576 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
2313, 22sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
24 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑔:ℕ⟶dom ∫1)
25 simprrr 781 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))
26 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑔𝑛)‘𝑦) = ((𝑔𝑛)‘𝑥))
2726mpteq2dv 5186 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)))
28 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2928fveq1d 6824 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑔𝑛)‘𝑥) = ((𝑔𝑚)‘𝑥))
3029cbvmptv 5196 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥))
3127, 30eqtrdi 2780 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)))
32 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
3331, 32breq12d 5105 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥)))
3433rspccva 3576 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
3525, 34sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
368, 9, 10, 11, 12, 23, 24, 35mbfmullem2 25623 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → (𝐹f · 𝐺) ∈ MblFn)
3736ex 412 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
3837exlimdvv 1934 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
397, 38biimtrrid 243 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
403, 6, 39mp2and 699 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wral 3044   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  cr 11008   · cmul 11014  cn 12128  cli 15391  MblFncmbf 25513  1citg1 25514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-0p 25569
This theorem is referenced by:  mbfmul  25625
  Copyright terms: Public domain W3C validator