MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem Structured version   Visualization version   GIF version

Theorem mbfmullem 24795
Description: Lemma for mbfmul 24796. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmullem (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmullem
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfmul.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
31, 2mbfi1flim 24793 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
4 mbfmul.2 . . 3 (𝜑𝐺 ∈ MblFn)
5 mbfmul.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
64, 5mbfi1flim 24793 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))
7 exdistrv 1960 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))))
81adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹 ∈ MblFn)
94adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺 ∈ MblFn)
102adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹:𝐴⟶ℝ)
115adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺:𝐴⟶ℝ)
12 simprll 775 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑓:ℕ⟶dom ∫1)
13 simprlr 776 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦))
14 fveq2 6756 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑓𝑛)‘𝑦) = ((𝑓𝑛)‘𝑥))
1514mpteq2dv 5172 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)))
16 fveq2 6756 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
1716fveq1d 6758 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑚)‘𝑥))
1817cbvmptv 5183 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥))
1915, 18eqtrdi 2795 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)))
20 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
2119, 20breq12d 5083 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥)))
2221rspccva 3551 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
2313, 22sylan 579 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
24 simprrl 777 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑔:ℕ⟶dom ∫1)
25 simprrr 778 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))
26 fveq2 6756 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑔𝑛)‘𝑦) = ((𝑔𝑛)‘𝑥))
2726mpteq2dv 5172 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)))
28 fveq2 6756 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2928fveq1d 6758 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑔𝑛)‘𝑥) = ((𝑔𝑚)‘𝑥))
3029cbvmptv 5183 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥))
3127, 30eqtrdi 2795 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)))
32 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
3331, 32breq12d 5083 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥)))
3433rspccva 3551 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
3525, 34sylan 579 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
368, 9, 10, 11, 12, 23, 24, 35mbfmullem2 24794 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → (𝐹f · 𝐺) ∈ MblFn)
3736ex 412 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
3837exlimdvv 1938 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
397, 38syl5bir 242 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
403, 6, 39mp2and 695 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wral 3063   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cr 10801   · cmul 10807  cn 11903  cli 15121  MblFncmbf 24683  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-0p 24739
This theorem is referenced by:  mbfmul  24796
  Copyright terms: Public domain W3C validator