MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem Structured version   Visualization version   GIF version

Theorem mbfmullem 25234
Description: Lemma for mbfmul 25235. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfmullem (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmullem
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . 3 (𝜑𝐹 ∈ MblFn)
2 mbfmul.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
31, 2mbfi1flim 25232 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
4 mbfmul.2 . . 3 (𝜑𝐺 ∈ MblFn)
5 mbfmul.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
64, 5mbfi1flim 25232 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))
7 exdistrv 1959 . . 3 (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))))
81adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹 ∈ MblFn)
94adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺 ∈ MblFn)
102adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐹:𝐴⟶ℝ)
115adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝐺:𝐴⟶ℝ)
12 simprll 777 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑓:ℕ⟶dom ∫1)
13 simprlr 778 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦))
14 fveq2 6888 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑓𝑛)‘𝑦) = ((𝑓𝑛)‘𝑥))
1514mpteq2dv 5249 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)))
16 fveq2 6888 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
1716fveq1d 6890 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑚)‘𝑥))
1817cbvmptv 5260 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥))
1915, 18eqtrdi 2788 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)))
20 fveq2 6888 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
2119, 20breq12d 5160 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥)))
2221rspccva 3611 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
2313, 22sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓𝑚)‘𝑥)) ⇝ (𝐹𝑥))
24 simprrl 779 . . . . . 6 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → 𝑔:ℕ⟶dom ∫1)
25 simprrr 780 . . . . . . 7 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))
26 fveq2 6888 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑔𝑛)‘𝑦) = ((𝑔𝑛)‘𝑥))
2726mpteq2dv 5249 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)))
28 fveq2 6888 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2928fveq1d 6890 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝑔𝑛)‘𝑥) = ((𝑔𝑚)‘𝑥))
3029cbvmptv 5260 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥))
3127, 30eqtrdi 2788 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)))
32 fveq2 6888 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
3331, 32breq12d 5160 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥)))
3433rspccva 3611 . . . . . . 7 ((∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
3525, 34sylan 580 . . . . . 6 (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) ∧ 𝑥𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔𝑚)‘𝑥)) ⇝ (𝐺𝑥))
368, 9, 10, 11, 12, 23, 24, 35mbfmullem2 25233 . . . . 5 ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦)))) → (𝐹f · 𝐺) ∈ MblFn)
3736ex 413 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
3837exlimdvv 1937 . . 3 (𝜑 → (∃𝑓𝑔((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
397, 38biimtrrid 242 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑦)) ⇝ (𝐹𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑦𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑦)) ⇝ (𝐺𝑦))) → (𝐹f · 𝐺) ∈ MblFn))
403, 6, 39mp2and 697 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  wral 3061   class class class wbr 5147  cmpt 5230  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7405  f cof 7664  cr 11105   · cmul 11111  cn 12208  cli 15424  MblFncmbf 25122  1citg1 25123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cmp 22882  df-ovol 24972  df-vol 24973  df-mbf 25127  df-itg1 25128  df-0p 25178
This theorem is referenced by:  mbfmul  25235
  Copyright terms: Public domain W3C validator