Step | Hyp | Ref
| Expression |
1 | | mbfmul.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbfmul.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
3 | 1, 2 | mbfi1flim 24888 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦))) |
4 | | mbfmul.2 |
. . 3
⊢ (𝜑 → 𝐺 ∈ MblFn) |
5 | | mbfmul.4 |
. . 3
⊢ (𝜑 → 𝐺:𝐴⟶ℝ) |
6 | 4, 5 | mbfi1flim 24888 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦))) |
7 | | exdistrv 1959 |
. . 3
⊢
(∃𝑓∃𝑔((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) |
8 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝐹 ∈ MblFn) |
9 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝐺 ∈ MblFn) |
10 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝐹:𝐴⟶ℝ) |
11 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝐺:𝐴⟶ℝ) |
12 | | simprll 776 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝑓:ℕ⟶dom
∫1) |
13 | | simprlr 777 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → ∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
14 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((𝑓‘𝑛)‘𝑦) = ((𝑓‘𝑛)‘𝑥)) |
15 | 14 | mpteq2dv 5176 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))) |
16 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
17 | 16 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝑓‘𝑛)‘𝑥) = ((𝑓‘𝑚)‘𝑥)) |
18 | 17 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑓‘𝑚)‘𝑥)) |
19 | 15, 18 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑓‘𝑚)‘𝑥))) |
20 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
21 | 19, 20 | breq12d 5087 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑓‘𝑚)‘𝑥)) ⇝ (𝐹‘𝑥))) |
22 | 21 | rspccva 3560 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓‘𝑚)‘𝑥)) ⇝ (𝐹‘𝑥)) |
23 | 13, 22 | sylan 580 |
. . . . . 6
⊢ (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) ∧ 𝑥 ∈ 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑓‘𝑚)‘𝑥)) ⇝ (𝐹‘𝑥)) |
24 | | simprrl 778 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → 𝑔:ℕ⟶dom
∫1) |
25 | | simprrr 779 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → ∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)) |
26 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((𝑔‘𝑛)‘𝑦) = ((𝑔‘𝑛)‘𝑥)) |
27 | 26 | mpteq2dv 5176 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥))) |
28 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝑔‘𝑛) = (𝑔‘𝑚)) |
29 | 28 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝑔‘𝑛)‘𝑥) = ((𝑔‘𝑚)‘𝑥)) |
30 | 29 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑔‘𝑚)‘𝑥)) |
31 | 27, 30 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑔‘𝑚)‘𝑥))) |
32 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) |
33 | 31, 32 | breq12d 5087 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦) ↔ (𝑚 ∈ ℕ ↦ ((𝑔‘𝑚)‘𝑥)) ⇝ (𝐺‘𝑥))) |
34 | 33 | rspccva 3560 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔‘𝑚)‘𝑥)) ⇝ (𝐺‘𝑥)) |
35 | 25, 34 | sylan 580 |
. . . . . 6
⊢ (((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) ∧ 𝑥 ∈ 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑔‘𝑚)‘𝑥)) ⇝ (𝐺‘𝑥)) |
36 | 8, 9, 10, 11, 12, 23, 24, 35 | mbfmullem2 24889 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦)))) → (𝐹 ∘f · 𝐺) ∈ MblFn) |
37 | 36 | ex 413 |
. . . 4
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦))) → (𝐹 ∘f · 𝐺) ∈
MblFn)) |
38 | 37 | exlimdvv 1937 |
. . 3
⊢ (𝜑 → (∃𝑓∃𝑔((𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ (𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦))) → (𝐹 ∘f · 𝐺) ∈
MblFn)) |
39 | 7, 38 | syl5bir 242 |
. 2
⊢ (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) ∧ ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑦 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑦)) ⇝ (𝐺‘𝑦))) → (𝐹 ∘f · 𝐺) ∈
MblFn)) |
40 | 3, 6, 39 | mp2and 696 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) |