| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcohtpy | Structured version Visualization version GIF version | ||
| Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| pcohtpy.4 | ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
| pcohtpy.5 | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) |
| pcohtpy.6 | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) |
| Ref | Expression |
|---|---|
| pcohtpy | ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcohtpy.5 | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) | |
| 2 | isphtpc 24909 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) |
| 4 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | pcohtpy.6 | . . . . 5 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) | |
| 6 | isphtpc 24909 | . . . . 5 ⊢ (𝐺( ≃ph‘𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) |
| 8 | 7 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 9 | pcohtpy.4 | . . 3 ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) | |
| 10 | 4, 8, 9 | pcocn 24933 | . 2 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) |
| 11 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
| 12 | 7 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐽)) |
| 13 | phtpc01 24911 | . . . . . 6 ⊢ (𝐹( ≃ph‘𝐽)𝐻 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1))) | |
| 14 | 1, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1))) |
| 15 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐹‘1) = (𝐻‘1)) |
| 16 | phtpc01 24911 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐾 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1))) | |
| 17 | 5, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1))) |
| 18 | 17 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐺‘0) = (𝐾‘0)) |
| 19 | 9, 15, 18 | 3eqtr3d 2772 | . . 3 ⊢ (𝜑 → (𝐻‘1) = (𝐾‘0)) |
| 20 | 11, 12, 19 | pcocn 24933 | . 2 ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽)) |
| 21 | 3 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅) |
| 22 | n0 4306 | . . . . 5 ⊢ ((𝐹(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | |
| 23 | 21, 22 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) |
| 24 | 7 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅) |
| 25 | n0 4306 | . . . . 5 ⊢ ((𝐺(PHtpy‘𝐽)𝐾) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) | |
| 26 | 24, 25 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) |
| 27 | exdistrv 1955 | . . . 4 ⊢ (∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ↔ (∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) | |
| 28 | 23, 26, 27 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) |
| 29 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝐹‘1) = (𝐺‘0)) |
| 30 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐹( ≃ph‘𝐽)𝐻) |
| 31 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐺( ≃ph‘𝐽)𝐾) |
| 32 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) | |
| 33 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | |
| 34 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) | |
| 35 | 29, 30, 31, 32, 33, 34 | pcohtpylem 24935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) |
| 36 | 35 | ne0d 4295 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅) |
| 37 | 36 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) |
| 38 | 37 | exlimdvv 1934 | . . 3 ⊢ (𝜑 → (∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) |
| 39 | 28, 38 | mpd 15 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅) |
| 40 | isphtpc 24909 | . 2 ⊢ ((𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾) ↔ ((𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽) ∧ (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) | |
| 41 | 10, 20, 39, 40 | syl3anbrc 1344 | 1 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 ifcif 4478 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 · cmul 11033 ≤ cle 11169 − cmin 11365 / cdiv 11795 2c2 12201 [,]cicc 13269 Cn ccn 23127 IIcii 24784 PHtpycphtpy 24883 ≃phcphtpc 24884 *𝑝cpco 24916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-ii 24786 df-htpy 24885 df-phtpy 24886 df-phtpc 24907 df-pco 24921 |
| This theorem is referenced by: pcophtb 24945 pi1cpbl 24960 pi1xfrf 24969 pi1xfr 24971 pi1xfrcnvlem 24972 |
| Copyright terms: Public domain | W3C validator |