| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcohtpy | Structured version Visualization version GIF version | ||
| Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| pcohtpy.4 | ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
| pcohtpy.5 | ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) |
| pcohtpy.6 | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) |
| Ref | Expression |
|---|---|
| pcohtpy | ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcohtpy.5 | . . . . 5 ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) | |
| 2 | isphtpc 24942 | . . . . 5 ⊢ (𝐹( ≃ph‘𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) |
| 4 | 3 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 5 | pcohtpy.6 | . . . . 5 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) | |
| 6 | isphtpc 24942 | . . . . 5 ⊢ (𝐺( ≃ph‘𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) |
| 8 | 7 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 9 | pcohtpy.4 | . . 3 ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) | |
| 10 | 4, 8, 9 | pcocn 24966 | . 2 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) |
| 11 | 3 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
| 12 | 7 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐽)) |
| 13 | phtpc01 24944 | . . . . . 6 ⊢ (𝐹( ≃ph‘𝐽)𝐻 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1))) | |
| 14 | 1, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1))) |
| 15 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐹‘1) = (𝐻‘1)) |
| 16 | phtpc01 24944 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐾 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1))) | |
| 17 | 5, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1))) |
| 18 | 17 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐺‘0) = (𝐾‘0)) |
| 19 | 9, 15, 18 | 3eqtr3d 2778 | . . 3 ⊢ (𝜑 → (𝐻‘1) = (𝐾‘0)) |
| 20 | 11, 12, 19 | pcocn 24966 | . 2 ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽)) |
| 21 | 3 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅) |
| 22 | n0 4328 | . . . . 5 ⊢ ((𝐹(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | |
| 23 | 21, 22 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) |
| 24 | 7 | simp3d 1144 | . . . . 5 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅) |
| 25 | n0 4328 | . . . . 5 ⊢ ((𝐺(PHtpy‘𝐽)𝐾) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) | |
| 26 | 24, 25 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) |
| 27 | exdistrv 1955 | . . . 4 ⊢ (∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ↔ (∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) | |
| 28 | 23, 26, 27 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) |
| 29 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝐹‘1) = (𝐺‘0)) |
| 30 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐹( ≃ph‘𝐽)𝐻) |
| 31 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐺( ≃ph‘𝐽)𝐾) |
| 32 | eqid 2735 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) | |
| 33 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | |
| 34 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) | |
| 35 | 29, 30, 31, 32, 33, 34 | pcohtpylem 24968 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) |
| 36 | 35 | ne0d 4317 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅) |
| 37 | 36 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) |
| 38 | 37 | exlimdvv 1934 | . . 3 ⊢ (𝜑 → (∃𝑚∃𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) |
| 39 | 28, 38 | mpd 15 | . 2 ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅) |
| 40 | isphtpc 24942 | . 2 ⊢ ((𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾) ↔ ((𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽) ∧ (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) ≠ ∅)) | |
| 41 | 10, 20, 39, 40 | syl3anbrc 1344 | 1 ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 ifcif 4500 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 0cc0 11127 1c1 11128 · cmul 11132 ≤ cle 11268 − cmin 11464 / cdiv 11892 2c2 12293 [,]cicc 13363 Cn ccn 23160 IIcii 24817 PHtpycphtpy 24916 ≃phcphtpc 24917 *𝑝cpco 24949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-cn 23163 df-cnp 23164 df-tx 23498 df-hmeo 23691 df-xms 24257 df-ms 24258 df-tms 24259 df-ii 24819 df-htpy 24918 df-phtpy 24919 df-phtpc 24940 df-pco 24954 |
| This theorem is referenced by: pcophtb 24978 pi1cpbl 24993 pi1xfrf 25002 pi1xfr 25004 pi1xfrcnvlem 25005 |
| Copyright terms: Public domain | W3C validator |