MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpy Structured version   Visualization version   GIF version

Theorem pcohtpy 24940
Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
Assertion
Ref Expression
pcohtpy (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))

Proof of Theorem pcohtpy
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 24913 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 218 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1142 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 24913 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 218 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1142 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 24937 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1143 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1143 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 phtpc01 24915 . . . . . 6 (𝐹( ≃ph𝐽)𝐻 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
141, 13syl 17 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 495 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 phtpc01 24915 . . . . . 6 (𝐺( ≃ph𝐽)𝐾 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
175, 16syl 17 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 494 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2773 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 24937 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
213simp3d 1144 . . . . 5 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)
22 n0 4301 . . . . 5 ((𝐹(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
2321, 22sylib 218 . . . 4 (𝜑 → ∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
247simp3d 1144 . . . . 5 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)
25 n0 4301 . . . . 5 ((𝐺(PHtpy‘𝐽)𝐾) ≠ ∅ ↔ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
2624, 25sylib 218 . . . 4 (𝜑 → ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
27 exdistrv 1956 . . . 4 (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ↔ (∃𝑚 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ ∃𝑛 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
2823, 26, 27sylanbrc 583 . . 3 (𝜑 → ∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)))
299adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝐹‘1) = (𝐺‘0))
301adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐹( ≃ph𝐽)𝐻)
315adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝐺( ≃ph𝐽)𝐾)
32 eqid 2730 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦)))
33 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻))
34 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))
3529, 30, 31, 32, 33, 34pcohtpylem 24939 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑚𝑦), (((2 · 𝑥) − 1)𝑛𝑦))) ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
3635ne0d 4290 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾))) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
3736ex 412 . . . 4 (𝜑 → ((𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
3837exlimdvv 1935 . . 3 (𝜑 → (∃𝑚𝑛(𝑚 ∈ (𝐹(PHtpy‘𝐽)𝐻) ∧ 𝑛 ∈ (𝐺(PHtpy‘𝐽)𝐾)) → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
3928, 38mpd 15 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅)
40 isphtpc 24913 . 2 ((𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾) ↔ ((𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽) ∧ (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽) ∧ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)) ≠ ∅))
4110, 20, 39, 40syl3anbrc 1344 1 (𝜑 → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)(𝐻(*𝑝𝐽)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  c0 4281  ifcif 4473   class class class wbr 5089  cfv 6477  (class class class)co 7341  cmpo 7343  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cmin 11336   / cdiv 11766  2c2 12172  [,]cicc 13240   Cn ccn 23132  IIcii 24788  PHtpycphtpy 24887  phcphtpc 24888  *𝑝cpco 24920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-icc 13244  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-cn 23135  df-cnp 23136  df-tx 23470  df-hmeo 23663  df-xms 24228  df-ms 24229  df-tms 24230  df-ii 24790  df-htpy 24889  df-phtpy 24890  df-phtpc 24911  df-pco 24925
This theorem is referenced by:  pcophtb  24949  pi1cpbl  24964  pi1xfrf  24973  pi1xfr  24975  pi1xfrcnvlem  24976
  Copyright terms: Public domain W3C validator