MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2exprb Structured version   Visualization version   GIF version

Theorem hash2exprb 14506
Description: A set of size two is an unordered pair if and only if it contains two different elements. (Contributed by Alexander van der Vekens, 14-Jan-2018.)
Assertion
Ref Expression
hash2exprb (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2exprb
StepHypRef Expression
1 hash2prde 14505 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
21ex 412 . 2 (𝑉𝑊 → ((♯‘𝑉) = 2 → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
3 hashprg 14430 . . . . . . . . 9 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
43el2v 3484 . . . . . . . 8 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
54a1i 11 . . . . . . 7 (𝑉 = {𝑎, 𝑏} → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
65biimpd 229 . . . . . 6 (𝑉 = {𝑎, 𝑏} → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
7 fveqeq2 6915 . . . . . 6 (𝑉 = {𝑎, 𝑏} → ((♯‘𝑉) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
86, 7sylibrd 259 . . . . 5 (𝑉 = {𝑎, 𝑏} → (𝑎𝑏 → (♯‘𝑉) = 2))
98impcom 407 . . . 4 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (♯‘𝑉) = 2)
109a1i 11 . . 3 (𝑉𝑊 → ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (♯‘𝑉) = 2))
1110exlimdvv 1931 . 2 (𝑉𝑊 → (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (♯‘𝑉) = 2))
122, 11impbid 212 1 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wne 2937  Vcvv 3477  {cpr 4632  cfv 6562  2c2 12318  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  hash2prb  14507  prprelb  47440
  Copyright terms: Public domain W3C validator