Proof of Theorem expneg
Step | Hyp | Ref
| Expression |
1 | | elnn0 12092 |
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | nnne0 11864 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
3 | 2 | adantl 485 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
4 | | nncn 11838 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
5 | 4 | adantl 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
6 | 5 | negeq0d 11181 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0)) |
7 | 6 | necon3abid 2977 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) |
8 | 3, 7 | mpbid 235 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬
-𝑁 = 0) |
9 | 8 | iffalsed 4450 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) →
if(-𝑁 = 0, 1, if(0 <
-𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ
× {𝐴}))‘-𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}))‘--𝑁)))) |
10 | | nnnn0 12097 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
11 | 10 | adantl 485 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
12 | | nn0nlt0 12116 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ¬ 𝑁 <
0) |
13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬
𝑁 < 0) |
14 | 11 | nn0red 12151 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
15 | 14 | lt0neg1d 11401 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁)) |
16 | 13, 15 | mtbid 327 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0
< -𝑁) |
17 | 16 | iffalsed 4450 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0
< -𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))) = (1 / (seq1( · ,
(ℕ × {𝐴}))‘--𝑁))) |
18 | 5 | negnegd 11180 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
19 | 18 | fveq2d 6721 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1(
· , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ ×
{𝐴}))‘𝑁)) |
20 | 19 | oveq2d 7229 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 /
(seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ ×
{𝐴}))‘𝑁))) |
21 | 9, 17, 20 | 3eqtrd 2781 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) →
if(-𝑁 = 0, 1, if(0 <
-𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁)))) = (1 / (seq1( · ,
(ℕ × {𝐴}))‘𝑁))) |
22 | | nnnegz 12179 |
. . . . 5
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
23 | | expval 13637 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))))) |
24 | 22, 23 | sylan2 596 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))))) |
25 | | expnnval 13638 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ ×
{𝐴}))‘𝑁)) |
26 | 25 | oveq2d 7229 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 /
(𝐴↑𝑁)) = (1 / (seq1( · , (ℕ ×
{𝐴}))‘𝑁))) |
27 | 21, 24, 26 | 3eqtr4d 2787 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
28 | | 1div1e1 11522 |
. . . . 5
⊢ (1 / 1) =
1 |
29 | 28 | eqcomi 2746 |
. . . 4
⊢ 1 = (1 /
1) |
30 | | negeq 11070 |
. . . . . . 7
⊢ (𝑁 = 0 → -𝑁 = -0) |
31 | | neg0 11124 |
. . . . . . 7
⊢ -0 =
0 |
32 | 30, 31 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑁 = 0 → -𝑁 = 0) |
33 | 32 | oveq2d 7229 |
. . . . 5
⊢ (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0)) |
34 | | exp0 13639 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
35 | 33, 34 | sylan9eqr 2800 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1) |
36 | | oveq2 7221 |
. . . . . 6
⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) |
37 | 36, 34 | sylan9eqr 2800 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
38 | 37 | oveq2d 7229 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴↑𝑁)) = (1 / 1)) |
39 | 29, 35, 38 | 3eqtr4a 2804 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
40 | 27, 39 | jaodan 958 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
41 | 1, 40 | sylan2b 597 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |