MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expneg Structured version   Visualization version   GIF version

Theorem expneg 13971
Description: Value of a complex number raised to a nonpositive integer power. When 𝐴 = 0 and 𝑁 is nonzero, both sides have the "value" (1 / 0); relying on that should be avoid in applications. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expneg ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expneg
StepHypRef Expression
1 elnn0 12378 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 12154 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 12128 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 11459 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2964 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 4481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))))
10 nnnn0 12383 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 12402 . . . . . . . 8 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 12438 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 11681 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 324 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 4481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))
185negnegd 11458 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 6821 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2019oveq2d 7357 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
219, 17, 203eqtrd 2770 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
22 nnnegz 12466 . . . . 5 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
23 expval 13965 . . . . 5 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
2422, 23sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
25 expnnval 13966 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2625oveq2d 7357 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
2721, 24, 263eqtr4d 2776 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
28 1div1e1 11807 . . . . 5 (1 / 1) = 1
2928eqcomi 2740 . . . 4 1 = (1 / 1)
30 negeq 11347 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
31 neg0 11402 . . . . . . 7 -0 = 0
3230, 31eqtrdi 2782 . . . . . 6 (𝑁 = 0 → -𝑁 = 0)
3332oveq2d 7357 . . . . 5 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
34 exp0 13967 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3533, 34sylan9eqr 2788 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
36 oveq2 7349 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
3736, 34sylan9eqr 2788 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
3837oveq2d 7357 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
3929, 35, 383eqtr4a 2792 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4027, 39jaodan 959 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
411, 40sylan2b 594 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  ifcif 4470  {csn 4571   class class class wbr 5086   × cxp 5609  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   · cmul 11006   < clt 11141  -cneg 11340   / cdiv 11769  cn 12120  0cn0 12376  cz 12463  seqcseq 13903  cexp 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-seq 13904  df-exp 13964
This theorem is referenced by:  expneg2  13972  expn1  13973  expnegz  13998  efexp  16005  pcexp  16766  aaliou3lem8  26275  basellem3  27015  basellem4  27016  basellem8  27020  ex-exp  30422  dvtan  37710  irrapxlem5  42859  pellexlem2  42863  nn0digval  48632
  Copyright terms: Public domain W3C validator