MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expneg Structured version   Visualization version   GIF version

Theorem expneg 14107
Description: Value of a complex number raised to a nonpositive integer power. When 𝐴 = 0 and 𝑁 is nonzero, both sides have the "value" (1 / 0); relying on that should be avoid in applications. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expneg ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expneg
StepHypRef Expression
1 elnn0 12526 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnne0 12298 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
32adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
4 nncn 12272 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
54adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
65negeq0d 11610 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0))
76necon3abid 2975 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
83, 7mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ -𝑁 = 0)
98iffalsed 4542 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))))
10 nnnn0 12531 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1110adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
12 nn0nlt0 12550 . . . . . . . 8 (𝑁 ∈ ℕ0 → ¬ 𝑁 < 0)
1311, 12syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0)
1411nn0red 12586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
1514lt0neg1d 11830 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁))
1613, 15mtbid 324 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0 < -𝑁)
1716iffalsed 4542 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁))) = (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))
185negnegd 11609 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1918fveq2d 6911 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2019oveq2d 7447 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
219, 17, 203eqtrd 2779 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
22 nnnegz 12614 . . . . 5 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
23 expval 14101 . . . . 5 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
2422, 23sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘--𝑁)))))
25 expnnval 14102 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
2625oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 / (𝐴𝑁)) = (1 / (seq1( · , (ℕ × {𝐴}))‘𝑁)))
2721, 24, 263eqtr4d 2785 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
28 1div1e1 11956 . . . . 5 (1 / 1) = 1
2928eqcomi 2744 . . . 4 1 = (1 / 1)
30 negeq 11498 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
31 neg0 11553 . . . . . . 7 -0 = 0
3230, 31eqtrdi 2791 . . . . . 6 (𝑁 = 0 → -𝑁 = 0)
3332oveq2d 7447 . . . . 5 (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0))
34 exp0 14103 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3533, 34sylan9eqr 2797 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1)
36 oveq2 7439 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
3736, 34sylan9eqr 2797 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
3837oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴𝑁)) = (1 / 1))
3929, 35, 383eqtr4a 2801 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
4027, 39jaodan 959 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
411, 40sylan2b 594 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  ifcif 4531  {csn 4631   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  -cneg 11491   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  seqcseq 14039  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-seq 14040  df-exp 14100
This theorem is referenced by:  expneg2  14108  expn1  14109  expnegz  14134  efexp  16134  pcexp  16893  aaliou3lem8  26402  basellem3  27141  basellem4  27142  basellem8  27146  ex-exp  30479  dvtan  37657  irrapxlem5  42814  pellexlem2  42818  nn0digval  48450
  Copyright terms: Public domain W3C validator