Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   GIF version

Theorem ismrer1 36297
Description: An isometry between and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
ismrer1.2 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
Assertion
Ref Expression
ismrer1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem ismrer1
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4596 . . . . . . . 8 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21xpeq1d 5662 . . . . . . 7 (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥}))
32mpteq2dv 5207 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})))
4 ismrer1.2 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
53, 4eqtr4di 2794 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹)
65f1oeq1d 6779 . . . 4 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦})))
71oveq2d 7373 . . . . 5 (𝑦 = 𝐴 → (ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}))
8 f1oeq3 6774 . . . . 5 ((ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
97, 8syl 17 . . . 4 (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
106, 9bitrd 278 . . 3 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
11 eqid 2736 . . . 4 {𝑦} = {𝑦}
12 reex 11142 . . . 4 ℝ ∈ V
13 vex 3449 . . . 4 𝑦 ∈ V
14 eqid 2736 . . . 4 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥}))
1511, 12, 13, 14mapsnf1o3 8833 . . 3 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦})
1610, 15vtoclg 3525 . 2 (𝐴𝑉𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))
17 sneq 4596 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1817xpeq2d 5663 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦}))
19 snex 5388 . . . . . . . . . . . . . . . . 17 {𝐴} ∈ V
20 snex 5388 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ V
2119, 20xpex 7687 . . . . . . . . . . . . . . . 16 ({𝐴} × {𝑥}) ∈ V
2218, 4, 21fvmpt3i 6953 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = ({𝐴} × {𝑦}))
2322fveq1d 6844 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
2423adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
25 snidg 4620 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 ∈ {𝐴})
26 fvconst2g 7151 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2713, 25, 26sylancr 587 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2824, 27sylan9eqr 2798 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)‘𝐴) = 𝑦)
29 sneq 4596 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029xpeq2d 5663 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧}))
3130, 4, 21fvmpt3i 6953 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = ({𝐴} × {𝑧}))
3231fveq1d 6844 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
3332adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
34 vex 3449 . . . . . . . . . . . . . 14 𝑧 ∈ V
35 fvconst2g 7151 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3634, 25, 35sylancr 587 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3733, 36sylan9eqr 2798 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑧)‘𝐴) = 𝑧)
3828, 37oveq12d 7375 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)) = (𝑦𝑧))
3938oveq1d 7372 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((𝑦𝑧)↑2))
40 resubcl 11465 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℝ)
4140adantl 482 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℝ)
42 absresq 15187 . . . . . . . . . . 11 ((𝑦𝑧) ∈ ℝ → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4341, 42syl 17 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4439, 43eqtr4d 2779 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((abs‘(𝑦𝑧))↑2))
4541recnd 11183 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℂ)
4645abscld 15321 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℝ)
4746recnd 11183 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℂ)
4847sqcld 14049 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) ∈ ℂ)
4944, 48eqeltrd 2838 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ)
50 fveq2 6842 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝐴))
51 fveq2 6842 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑧)‘𝑘) = ((𝐹𝑧)‘𝐴))
5250, 51oveq12d 7375 . . . . . . . . . 10 (𝑘 = 𝐴 → (((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘)) = (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)))
5352oveq1d 7372 . . . . . . . . 9 (𝑘 = 𝐴 → ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5453sumsn 15631 . . . . . . . 8 ((𝐴𝑉 ∧ ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5549, 54syldan 591 . . . . . . 7 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5655, 44eqtrd 2776 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((abs‘(𝑦𝑧))↑2))
5756fveq2d 6846 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (√‘((abs‘(𝑦𝑧))↑2)))
5845absge0d 15329 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤ (abs‘(𝑦𝑧)))
5946, 58sqrtsqd 15304 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘((abs‘(𝑦𝑧))↑2)) = (abs‘(𝑦𝑧)))
6057, 59eqtrd 2776 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (abs‘(𝑦𝑧)))
61 f1of 6784 . . . . . . . 8 (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) → 𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6216, 61syl 17 . . . . . . 7 (𝐴𝑉𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6362ffvelcdmda 7035 . . . . . 6 ((𝐴𝑉𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (ℝ ↑m {𝐴}))
6462ffvelcdmda 7035 . . . . . 6 ((𝐴𝑉𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (ℝ ↑m {𝐴}))
6563, 64anim12dan 619 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})))
66 snfi 8988 . . . . . 6 {𝐴} ∈ Fin
67 eqid 2736 . . . . . . 7 (ℝ ↑m {𝐴}) = (ℝ ↑m {𝐴})
6867rrnmval 36287 . . . . . 6 (({𝐴} ∈ Fin ∧ (𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
6966, 68mp3an1 1448 . . . . 5 (((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7065, 69syl 17 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
71 ismrer1.1 . . . . . 6 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
7271remetdval 24152 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7372adantl 482 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7460, 70, 733eqtr4rd 2787 . . 3 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7574ralrimivva 3197 . 2 (𝐴𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7671rexmet 24154 . . 3 𝑅 ∈ (∞Met‘ℝ)
7767rrnmet 36288 . . . 4 ({𝐴} ∈ Fin → (ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})))
78 metxmet 23687 . . . 4 ((ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})) → (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴})))
7966, 77, 78mp2b 10 . . 3 (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))
80 isismty 36260 . . 3 ((𝑅 ∈ (∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))) → (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))))
8176, 79, 80mp2an 690 . 2 (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧))))
8216, 75, 81sylanbrc 583 1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  {csn 4586  cmpt 5188   × cxp 5631  cres 5635  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  cmin 11385  2c2 12208  cexp 13967  csqrt 15118  abscabs 15119  Σcsu 15570  ∞Metcxmet 20781  Metcmet 20782   Ismty cismty 36257  ncrrn 36284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-xadd 13034  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-xmet 20789  df-met 20790  df-ismty 36258  df-rrn 36285
This theorem is referenced by:  reheibor  36298
  Copyright terms: Public domain W3C validator