| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sneq 4636 | . . . . . . . 8
⊢ (𝑦 = 𝐴 → {𝑦} = {𝐴}) | 
| 2 | 1 | xpeq1d 5714 | . . . . . . 7
⊢ (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥})) | 
| 3 | 2 | mpteq2dv 5244 | . . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))) | 
| 4 |  | ismrer1.2 | . . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})) | 
| 5 | 3, 4 | eqtr4di 2795 | . . . . 5
⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹) | 
| 6 | 5 | f1oeq1d 6843 | . . . 4
⊢ (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}))) | 
| 7 | 1 | oveq2d 7447 | . . . . 5
⊢ (𝑦 = 𝐴 → (ℝ ↑m {𝑦}) = (ℝ ↑m
{𝐴})) | 
| 8 |  | f1oeq3 6838 | . . . . 5
⊢ ((ℝ
↑m {𝑦}) =
(ℝ ↑m {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))) | 
| 9 | 7, 8 | syl 17 | . . . 4
⊢ (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))) | 
| 10 | 6, 9 | bitrd 279 | . . 3
⊢ (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))) | 
| 11 |  | eqid 2737 | . . . 4
⊢ {𝑦} = {𝑦} | 
| 12 |  | reex 11246 | . . . 4
⊢ ℝ
∈ V | 
| 13 |  | vex 3484 | . . . 4
⊢ 𝑦 ∈ V | 
| 14 |  | eqid 2737 | . . . 4
⊢ (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) | 
| 15 | 11, 12, 13, 14 | mapsnf1o3 8935 | . . 3
⊢ (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) | 
| 16 | 10, 15 | vtoclg 3554 | . 2
⊢ (𝐴 ∈ 𝑉 → 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})) | 
| 17 |  | sneq 4636 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | 
| 18 | 17 | xpeq2d 5715 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦})) | 
| 19 |  | snex 5436 | . . . . . . . . . . . . . . . . 17
⊢ {𝐴} ∈ V | 
| 20 |  | snex 5436 | . . . . . . . . . . . . . . . . 17
⊢ {𝑥} ∈ V | 
| 21 | 19, 20 | xpex 7773 | . . . . . . . . . . . . . . . 16
⊢ ({𝐴} × {𝑥}) ∈ V | 
| 22 | 18, 4, 21 | fvmpt3i 7021 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = ({𝐴} × {𝑦})) | 
| 23 | 22 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → ((𝐹‘𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴)) | 
| 24 | 23 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴)) | 
| 25 |  | snidg 4660 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | 
| 26 |  | fvconst2g 7222 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦) | 
| 27 | 13, 25, 26 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦) | 
| 28 | 24, 27 | sylan9eqr 2799 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹‘𝑦)‘𝐴) = 𝑦) | 
| 29 |  | sneq 4636 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | 
| 30 | 29 | xpeq2d 5715 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧})) | 
| 31 | 30, 4, 21 | fvmpt3i 7021 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℝ → (𝐹‘𝑧) = ({𝐴} × {𝑧})) | 
| 32 | 31 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℝ → ((𝐹‘𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴)) | 
| 33 | 32 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴)) | 
| 34 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V | 
| 35 |  | fvconst2g 7222 | . . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧) | 
| 36 | 34, 25, 35 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧) | 
| 37 | 33, 36 | sylan9eqr 2799 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹‘𝑧)‘𝐴) = 𝑧) | 
| 38 | 28, 37 | oveq12d 7449 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴)) = (𝑦 − 𝑧)) | 
| 39 | 38 | oveq1d 7446 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2) = ((𝑦 − 𝑧)↑2)) | 
| 40 |  | resubcl 11573 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − 𝑧) ∈ ℝ) | 
| 41 | 40 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦 − 𝑧) ∈ ℝ) | 
| 42 |  | absresq 15341 | . . . . . . . . . . 11
⊢ ((𝑦 − 𝑧) ∈ ℝ → ((abs‘(𝑦 − 𝑧))↑2) = ((𝑦 − 𝑧)↑2)) | 
| 43 | 41, 42 | syl 17 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦 − 𝑧))↑2) = ((𝑦 − 𝑧)↑2)) | 
| 44 | 39, 43 | eqtr4d 2780 | . . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2) = ((abs‘(𝑦 − 𝑧))↑2)) | 
| 45 | 41 | recnd 11289 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦 − 𝑧) ∈ ℂ) | 
| 46 | 45 | abscld 15475 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦 − 𝑧)) ∈ ℝ) | 
| 47 | 46 | recnd 11289 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦 − 𝑧)) ∈ ℂ) | 
| 48 | 47 | sqcld 14184 | . . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦 − 𝑧))↑2) ∈ ℂ) | 
| 49 | 44, 48 | eqeltrd 2841 | . . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2) ∈ ℂ) | 
| 50 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → ((𝐹‘𝑦)‘𝑘) = ((𝐹‘𝑦)‘𝐴)) | 
| 51 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → ((𝐹‘𝑧)‘𝑘) = ((𝐹‘𝑧)‘𝐴)) | 
| 52 | 50, 51 | oveq12d 7449 | . . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘)) = (((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))) | 
| 53 | 52 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑘 = 𝐴 → ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2) = ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2)) | 
| 54 | 53 | sumsn 15782 | . . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2) ∈ ℂ) →
Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2) = ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2)) | 
| 55 | 49, 54 | syldan 591 | . . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2) = ((((𝐹‘𝑦)‘𝐴) − ((𝐹‘𝑧)‘𝐴))↑2)) | 
| 56 | 55, 44 | eqtrd 2777 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2) = ((abs‘(𝑦 − 𝑧))↑2)) | 
| 57 | 56 | fveq2d 6910 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) →
(√‘Σ𝑘
∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2)) =
(√‘((abs‘(𝑦 − 𝑧))↑2))) | 
| 58 | 45 | absge0d 15483 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤
(abs‘(𝑦 − 𝑧))) | 
| 59 | 46, 58 | sqrtsqd 15458 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) →
(√‘((abs‘(𝑦 − 𝑧))↑2)) = (abs‘(𝑦 − 𝑧))) | 
| 60 | 57, 59 | eqtrd 2777 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) →
(√‘Σ𝑘
∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2)) = (abs‘(𝑦 − 𝑧))) | 
| 61 |  | f1of 6848 | . . . . . . . 8
⊢ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) → 𝐹:ℝ⟶(ℝ ↑m
{𝐴})) | 
| 62 | 16, 61 | syl 17 | . . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝐹:ℝ⟶(ℝ ↑m
{𝐴})) | 
| 63 | 62 | ffvelcdmda 7104 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (ℝ ↑m {𝐴})) | 
| 64 | 62 | ffvelcdmda 7104 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ (ℝ ↑m {𝐴})) | 
| 65 | 63, 64 | anim12dan 619 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹‘𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹‘𝑧) ∈ (ℝ ↑m {𝐴}))) | 
| 66 |  | snfi 9083 | . . . . . 6
⊢ {𝐴} ∈ Fin | 
| 67 |  | eqid 2737 | . . . . . . 7
⊢ (ℝ
↑m {𝐴}) =
(ℝ ↑m {𝐴}) | 
| 68 | 67 | rrnmval 37835 | . . . . . 6
⊢ (({𝐴} ∈ Fin ∧ (𝐹‘𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹‘𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2))) | 
| 69 | 66, 68 | mp3an1 1450 | . . . . 5
⊢ (((𝐹‘𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹‘𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2))) | 
| 70 | 65, 69 | syl 17 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹‘𝑦)‘𝑘) − ((𝐹‘𝑧)‘𝑘))↑2))) | 
| 71 |  | ismrer1.1 | . . . . . 6
⊢ 𝑅 = ((abs ∘ − )
↾ (ℝ × ℝ)) | 
| 72 | 71 | remetdval 24810 | . . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦 − 𝑧))) | 
| 73 | 72 | adantl 481 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦 − 𝑧))) | 
| 74 | 60, 70, 73 | 3eqtr4rd 2788 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧))) | 
| 75 | 74 | ralrimivva 3202 | . 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧))) | 
| 76 | 71 | rexmet 24812 | . . 3
⊢ 𝑅 ∈
(∞Met‘ℝ) | 
| 77 | 67 | rrnmet 37836 | . . . 4
⊢ ({𝐴} ∈ Fin →
(ℝn‘{𝐴}) ∈ (Met‘(ℝ
↑m {𝐴}))) | 
| 78 |  | metxmet 24344 | . . . 4
⊢
((ℝn‘{𝐴}) ∈ (Met‘(ℝ
↑m {𝐴}))
→ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ
↑m {𝐴}))) | 
| 79 | 66, 77, 78 | mp2b 10 | . . 3
⊢
(ℝn‘{𝐴}) ∈ (∞Met‘(ℝ
↑m {𝐴})) | 
| 80 |  | isismty 37808 | . . 3
⊢ ((𝑅 ∈
(∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈
(∞Met‘(ℝ ↑m {𝐴}))) → (𝐹 ∈ (𝑅 Ismty
(ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧))))) | 
| 81 | 76, 79, 80 | mp2an 692 | . 2
⊢ (𝐹 ∈ (𝑅 Ismty
(ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹‘𝑦)(ℝn‘{𝐴})(𝐹‘𝑧)))) | 
| 82 | 16, 75, 81 | sylanbrc 583 | 1
⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ (𝑅 Ismty
(ℝn‘{𝐴}))) |