Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   GIF version

Theorem ismrer1 37845
Description: An isometry between and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
ismrer1.2 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
Assertion
Ref Expression
ismrer1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem ismrer1
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4636 . . . . . . . 8 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21xpeq1d 5714 . . . . . . 7 (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥}))
32mpteq2dv 5244 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})))
4 ismrer1.2 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
53, 4eqtr4di 2795 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹)
65f1oeq1d 6843 . . . 4 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦})))
71oveq2d 7447 . . . . 5 (𝑦 = 𝐴 → (ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}))
8 f1oeq3 6838 . . . . 5 ((ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
97, 8syl 17 . . . 4 (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
106, 9bitrd 279 . . 3 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
11 eqid 2737 . . . 4 {𝑦} = {𝑦}
12 reex 11246 . . . 4 ℝ ∈ V
13 vex 3484 . . . 4 𝑦 ∈ V
14 eqid 2737 . . . 4 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥}))
1511, 12, 13, 14mapsnf1o3 8935 . . 3 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦})
1610, 15vtoclg 3554 . 2 (𝐴𝑉𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))
17 sneq 4636 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1817xpeq2d 5715 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦}))
19 snex 5436 . . . . . . . . . . . . . . . . 17 {𝐴} ∈ V
20 snex 5436 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ V
2119, 20xpex 7773 . . . . . . . . . . . . . . . 16 ({𝐴} × {𝑥}) ∈ V
2218, 4, 21fvmpt3i 7021 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = ({𝐴} × {𝑦}))
2322fveq1d 6908 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
2423adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
25 snidg 4660 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 ∈ {𝐴})
26 fvconst2g 7222 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2713, 25, 26sylancr 587 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2824, 27sylan9eqr 2799 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)‘𝐴) = 𝑦)
29 sneq 4636 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3029xpeq2d 5715 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧}))
3130, 4, 21fvmpt3i 7021 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = ({𝐴} × {𝑧}))
3231fveq1d 6908 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
3332adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
34 vex 3484 . . . . . . . . . . . . . 14 𝑧 ∈ V
35 fvconst2g 7222 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3634, 25, 35sylancr 587 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3733, 36sylan9eqr 2799 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑧)‘𝐴) = 𝑧)
3828, 37oveq12d 7449 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)) = (𝑦𝑧))
3938oveq1d 7446 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((𝑦𝑧)↑2))
40 resubcl 11573 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℝ)
4140adantl 481 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℝ)
42 absresq 15341 . . . . . . . . . . 11 ((𝑦𝑧) ∈ ℝ → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4341, 42syl 17 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4439, 43eqtr4d 2780 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((abs‘(𝑦𝑧))↑2))
4541recnd 11289 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℂ)
4645abscld 15475 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℝ)
4746recnd 11289 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℂ)
4847sqcld 14184 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) ∈ ℂ)
4944, 48eqeltrd 2841 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ)
50 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝐴))
51 fveq2 6906 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑧)‘𝑘) = ((𝐹𝑧)‘𝐴))
5250, 51oveq12d 7449 . . . . . . . . . 10 (𝑘 = 𝐴 → (((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘)) = (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)))
5352oveq1d 7446 . . . . . . . . 9 (𝑘 = 𝐴 → ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5453sumsn 15782 . . . . . . . 8 ((𝐴𝑉 ∧ ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5549, 54syldan 591 . . . . . . 7 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5655, 44eqtrd 2777 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((abs‘(𝑦𝑧))↑2))
5756fveq2d 6910 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (√‘((abs‘(𝑦𝑧))↑2)))
5845absge0d 15483 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤ (abs‘(𝑦𝑧)))
5946, 58sqrtsqd 15458 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘((abs‘(𝑦𝑧))↑2)) = (abs‘(𝑦𝑧)))
6057, 59eqtrd 2777 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (abs‘(𝑦𝑧)))
61 f1of 6848 . . . . . . . 8 (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) → 𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6216, 61syl 17 . . . . . . 7 (𝐴𝑉𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6362ffvelcdmda 7104 . . . . . 6 ((𝐴𝑉𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (ℝ ↑m {𝐴}))
6462ffvelcdmda 7104 . . . . . 6 ((𝐴𝑉𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (ℝ ↑m {𝐴}))
6563, 64anim12dan 619 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})))
66 snfi 9083 . . . . . 6 {𝐴} ∈ Fin
67 eqid 2737 . . . . . . 7 (ℝ ↑m {𝐴}) = (ℝ ↑m {𝐴})
6867rrnmval 37835 . . . . . 6 (({𝐴} ∈ Fin ∧ (𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
6966, 68mp3an1 1450 . . . . 5 (((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7065, 69syl 17 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
71 ismrer1.1 . . . . . 6 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
7271remetdval 24810 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7372adantl 481 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7460, 70, 733eqtr4rd 2788 . . 3 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7574ralrimivva 3202 . 2 (𝐴𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7671rexmet 24812 . . 3 𝑅 ∈ (∞Met‘ℝ)
7767rrnmet 37836 . . . 4 ({𝐴} ∈ Fin → (ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})))
78 metxmet 24344 . . . 4 ((ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})) → (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴})))
7966, 77, 78mp2b 10 . . 3 (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))
80 isismty 37808 . . 3 ((𝑅 ∈ (∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))) → (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))))
8176, 79, 80mp2an 692 . 2 (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧))))
8216, 75, 81sylanbrc 583 1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  cmpt 5225   × cxp 5683  cres 5687  ccom 5689  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cc 11153  cr 11154  cmin 11492  2c2 12321  cexp 14102  csqrt 15272  abscabs 15273  Σcsu 15722  ∞Metcxmet 21349  Metcmet 21350   Ismty cismty 37805  ncrrn 37832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xadd 13155  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ismty 37806  df-rrn 37833
This theorem is referenced by:  reheibor  37846
  Copyright terms: Public domain W3C validator