Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   GIF version

Theorem ismrer1 35120
Description: An isometry between and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
ismrer1.2 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
Assertion
Ref Expression
ismrer1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem ismrer1
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4580 . . . . . . . 8 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21xpeq1d 5587 . . . . . . 7 (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥}))
32mpteq2dv 5165 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})))
4 ismrer1.2 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
53, 4syl6eqr 2877 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹)
6 f1oeq1 6607 . . . . 5 ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦})))
75, 6syl 17 . . . 4 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦})))
81oveq2d 7175 . . . . 5 (𝑦 = 𝐴 → (ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}))
9 f1oeq3 6609 . . . . 5 ((ℝ ↑m {𝑦}) = (ℝ ↑m {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
108, 9syl 17 . . . 4 (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
117, 10bitrd 281 . . 3 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴})))
12 eqid 2824 . . . 4 {𝑦} = {𝑦}
13 reex 10631 . . . 4 ℝ ∈ V
14 vex 3500 . . . 4 𝑦 ∈ V
15 eqid 2824 . . . 4 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥}))
1612, 13, 14, 15mapsnf1o3 8462 . . 3 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑m {𝑦})
1711, 16vtoclg 3570 . 2 (𝐴𝑉𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}))
18 sneq 4580 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1918xpeq2d 5588 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦}))
20 snex 5335 . . . . . . . . . . . . . . . . 17 {𝐴} ∈ V
21 snex 5335 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ V
2220, 21xpex 7479 . . . . . . . . . . . . . . . 16 ({𝐴} × {𝑥}) ∈ V
2319, 4, 22fvmpt3i 6776 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = ({𝐴} × {𝑦}))
2423fveq1d 6675 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
2524adantr 483 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
26 snidg 4602 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 ∈ {𝐴})
27 fvconst2g 6967 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2814, 26, 27sylancr 589 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2925, 28sylan9eqr 2881 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)‘𝐴) = 𝑦)
30 sneq 4580 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3130xpeq2d 5588 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧}))
3231, 4, 22fvmpt3i 6776 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = ({𝐴} × {𝑧}))
3332fveq1d 6675 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
3433adantl 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
35 vex 3500 . . . . . . . . . . . . . 14 𝑧 ∈ V
36 fvconst2g 6967 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3735, 26, 36sylancr 589 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3834, 37sylan9eqr 2881 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑧)‘𝐴) = 𝑧)
3929, 38oveq12d 7177 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)) = (𝑦𝑧))
4039oveq1d 7174 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((𝑦𝑧)↑2))
41 resubcl 10953 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℝ)
4241adantl 484 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℝ)
43 absresq 14665 . . . . . . . . . . 11 ((𝑦𝑧) ∈ ℝ → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4442, 43syl 17 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4540, 44eqtr4d 2862 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((abs‘(𝑦𝑧))↑2))
4642recnd 10672 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℂ)
4746abscld 14799 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℝ)
4847recnd 10672 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℂ)
4948sqcld 13511 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) ∈ ℂ)
5045, 49eqeltrd 2916 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ)
51 fveq2 6673 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝐴))
52 fveq2 6673 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑧)‘𝑘) = ((𝐹𝑧)‘𝐴))
5351, 52oveq12d 7177 . . . . . . . . . 10 (𝑘 = 𝐴 → (((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘)) = (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)))
5453oveq1d 7174 . . . . . . . . 9 (𝑘 = 𝐴 → ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5554sumsn 15104 . . . . . . . 8 ((𝐴𝑉 ∧ ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5650, 55syldan 593 . . . . . . 7 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5756, 45eqtrd 2859 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((abs‘(𝑦𝑧))↑2))
5857fveq2d 6677 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (√‘((abs‘(𝑦𝑧))↑2)))
5946absge0d 14807 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤ (abs‘(𝑦𝑧)))
6047, 59sqrtsqd 14782 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘((abs‘(𝑦𝑧))↑2)) = (abs‘(𝑦𝑧)))
6158, 60eqtrd 2859 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (abs‘(𝑦𝑧)))
62 f1of 6618 . . . . . . . 8 (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) → 𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6317, 62syl 17 . . . . . . 7 (𝐴𝑉𝐹:ℝ⟶(ℝ ↑m {𝐴}))
6463ffvelrnda 6854 . . . . . 6 ((𝐴𝑉𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (ℝ ↑m {𝐴}))
6563ffvelrnda 6854 . . . . . 6 ((𝐴𝑉𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (ℝ ↑m {𝐴}))
6664, 65anim12dan 620 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})))
67 snfi 8597 . . . . . 6 {𝐴} ∈ Fin
68 eqid 2824 . . . . . . 7 (ℝ ↑m {𝐴}) = (ℝ ↑m {𝐴})
6968rrnmval 35110 . . . . . 6 (({𝐴} ∈ Fin ∧ (𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7067, 69mp3an1 1444 . . . . 5 (((𝐹𝑦) ∈ (ℝ ↑m {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑m {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7166, 70syl 17 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
72 ismrer1.1 . . . . . 6 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
7372remetdval 23400 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7473adantl 484 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7561, 71, 743eqtr4rd 2870 . . 3 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7675ralrimivva 3194 . 2 (𝐴𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7772rexmet 23402 . . 3 𝑅 ∈ (∞Met‘ℝ)
7868rrnmet 35111 . . . 4 ({𝐴} ∈ Fin → (ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})))
79 metxmet 22947 . . . 4 ((ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑m {𝐴})) → (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴})))
8067, 78, 79mp2b 10 . . 3 (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))
81 isismty 35083 . . 3 ((𝑅 ∈ (∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑m {𝐴}))) → (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))))
8277, 80, 81mp2an 690 . 2 (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑m {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧))))
8317, 76, 82sylanbrc 585 1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  {csn 4570  cmpt 5149   × cxp 5556  cres 5560  ccom 5562  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  m cmap 8409  Fincfn 8512  cc 10538  cr 10539  cmin 10873  2c2 11695  cexp 13432  csqrt 14595  abscabs 14596  Σcsu 15045  ∞Metcxmet 20533  Metcmet 20534   Ismty cismty 35080  ncrrn 35107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-xmet 20541  df-met 20542  df-ismty 35081  df-rrn 35108
This theorem is referenced by:  reheibor  35121
  Copyright terms: Public domain W3C validator