Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt34 Structured version   Visualization version   GIF version

Theorem metakunt34 39880
Description: 𝐷 is a permutation. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt34.1 (𝜑𝑀 ∈ ℕ)
metakunt34.2 (𝜑𝐼 ∈ ℕ)
metakunt34.3 (𝜑𝐼𝑀)
metakunt34.4 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt34 (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑤,𝐼   𝑤,𝑀   𝜑,𝑤
Allowed substitution hint:   𝐷(𝑤)

Proof of Theorem metakunt34
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metakunt34.1 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 metakunt34.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
3 metakunt34.3 . . . . . . 7 (𝜑𝐼𝑀)
4 eqid 2737 . . . . . . 7 (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
5 eqid 2737 . . . . . . 7 (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1))))
61, 2, 3, 4, 5metakunt14 39860 . . . . . 6 (𝜑 → ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1))))))
76simpld 498 . . . . 5 (𝜑 → (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
8 f1ocnv 6673 . . . . 5 ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
97, 8syl 17 . . . 4 (𝜑(𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
106simprd 499 . . . . 5 (𝜑(𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))))
1110f1oeq1d 6656 . . . 4 (𝜑 → ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀)))
129, 11mpbid 235 . . 3 (𝜑 → (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
13 eqid 2737 . . . . 5 (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼)))))
141, 2, 3, 13metakunt25 39871 . . . 4 (𝜑 → (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))):(1...𝑀)–1-1-onto→(1...𝑀))
15 f1oco 6683 . . . 4 (((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀)) → ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀))
1614, 7, 15syl2anc 587 . . 3 (𝜑 → ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀))
17 f1oco 6683 . . 3 (((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀)) → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀))
1812, 16, 17syl2anc 587 . 2 (𝜑 → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀))
19 metakunt34.4 . . . 4 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
201, 2, 3, 4, 13, 5, 19metakunt33 39879 . . 3 (𝜑 → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))) = 𝐷)
2120f1oeq1d 6656 . 2 (𝜑 → (((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀) ↔ 𝐷:(1...𝑀)–1-1-onto→(1...𝑀)))
2218, 21mpbid 235 1 (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  ifcif 4439   class class class wbr 5053  cmpt 5135  ccnv 5550  ccom 5555  1-1-ontowf1o 6379  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator