Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt34 Structured version   Visualization version   GIF version

Theorem metakunt34 40086
Description: 𝐷 is a permutation. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt34.1 (𝜑𝑀 ∈ ℕ)
metakunt34.2 (𝜑𝐼 ∈ ℕ)
metakunt34.3 (𝜑𝐼𝑀)
metakunt34.4 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt34 (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑤,𝐼   𝑤,𝑀   𝜑,𝑤
Allowed substitution hint:   𝐷(𝑤)

Proof of Theorem metakunt34
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metakunt34.1 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 metakunt34.2 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
3 metakunt34.3 . . . . . . 7 (𝜑𝐼𝑀)
4 eqid 2738 . . . . . . 7 (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
5 eqid 2738 . . . . . . 7 (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1))))
61, 2, 3, 4, 5metakunt14 40066 . . . . . 6 (𝜑 → ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1))))))
76simpld 494 . . . . 5 (𝜑 → (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
8 f1ocnv 6712 . . . . 5 ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
97, 8syl 17 . . . 4 (𝜑(𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
106simprd 495 . . . . 5 (𝜑(𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))))
1110f1oeq1d 6695 . . . 4 (𝜑 → ((𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀)))
129, 11mpbid 231 . . 3 (𝜑 → (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀))
13 eqid 2738 . . . . 5 (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼)))))
141, 2, 3, 13metakunt25 40077 . . . 4 (𝜑 → (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))):(1...𝑀)–1-1-onto→(1...𝑀))
15 f1oco 6722 . . . 4 (((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))):(1...𝑀)–1-1-onto→(1...𝑀)) → ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀))
1614, 7, 15syl2anc 583 . . 3 (𝜑 → ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀))
17 f1oco 6722 . . 3 (((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))):(1...𝑀)–1-1-onto→(1...𝑀) ∧ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))):(1...𝑀)–1-1-onto→(1...𝑀)) → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀))
1812, 16, 17syl2anc 583 . 2 (𝜑 → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀))
19 metakunt34.4 . . . 4 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
201, 2, 3, 4, 13, 5, 19metakunt33 40085 . . 3 (𝜑 → ((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))) = 𝐷)
2120f1oeq1d 6695 . 2 (𝜑 → (((𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝐼, if(𝑧 < 𝐼, 𝑧, (𝑧 + 1)))) ∘ ((𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝑀, if(𝑦 < 𝐼, (𝑦 + (𝑀𝐼)), (𝑦 + (1 − 𝐼))))) ∘ (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))):(1...𝑀)–1-1-onto→(1...𝑀) ↔ 𝐷:(1...𝑀)–1-1-onto→(1...𝑀)))
2218, 21mpbid 231 1 (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  ccnv 5579  ccom 5584  1-1-ontowf1o 6417  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator