Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcobijfs Structured version   Visualization version   GIF version

Theorem fcobijfs 32737
Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9477. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fcobij.1 (𝜑𝐺:𝑆1-1-onto𝑇)
fcobij.2 (𝜑𝑅𝑈)
fcobij.3 (𝜑𝑆𝑉)
fcobij.4 (𝜑𝑇𝑊)
fcobijfs.5 (𝜑𝑂𝑆)
fcobijfs.6 𝑄 = (𝐺𝑂)
fcobijfs.7 𝑋 = {𝑔 ∈ (𝑆m 𝑅) ∣ 𝑔 finSupp 𝑂}
fcobijfs.8 𝑌 = { ∈ (𝑇m 𝑅) ∣ finSupp 𝑄}
Assertion
Ref Expression
fcobijfs (𝜑 → (𝑓𝑋 ↦ (𝐺𝑓)):𝑋1-1-onto𝑌)
Distinct variable groups:   𝑓,,𝐺   𝑅,𝑓,   𝑆,𝑓,   𝑇,𝑓,   𝜑,𝑓,   𝑓,𝑂,   𝑄,𝑓,   𝑔,,𝑂   𝑅,𝑔   𝑆,𝑔   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑔)   𝑄(𝑔)   𝑇(𝑔)   𝑈(𝑓,𝑔,)   𝐺(𝑔)   𝑉(𝑓,𝑔,)   𝑊(𝑓,𝑔,)   𝑋(𝑔,)   𝑌(𝑔,)

Proof of Theorem fcobijfs
StepHypRef Expression
1 fcobijfs.7 . . . 4 𝑋 = {𝑔 ∈ (𝑆m 𝑅) ∣ 𝑔 finSupp 𝑂}
2 breq1 5169 . . . . 5 ( = 𝑔 → ( finSupp 𝑂𝑔 finSupp 𝑂))
32cbvrabv 3454 . . . 4 { ∈ (𝑆m 𝑅) ∣ finSupp 𝑂} = {𝑔 ∈ (𝑆m 𝑅) ∣ 𝑔 finSupp 𝑂}
41, 3eqtr4i 2771 . . 3 𝑋 = { ∈ (𝑆m 𝑅) ∣ finSupp 𝑂}
5 fcobijfs.8 . . 3 𝑌 = { ∈ (𝑇m 𝑅) ∣ finSupp 𝑄}
6 fcobijfs.6 . . 3 𝑄 = (𝐺𝑂)
7 f1oi 6900 . . . 4 ( I ↾ 𝑅):𝑅1-1-onto𝑅
87a1i 11 . . 3 (𝜑 → ( I ↾ 𝑅):𝑅1-1-onto𝑅)
9 fcobij.1 . . 3 (𝜑𝐺:𝑆1-1-onto𝑇)
10 fcobij.2 . . 3 (𝜑𝑅𝑈)
11 fcobij.3 . . 3 (𝜑𝑆𝑉)
12 fcobij.4 . . 3 (𝜑𝑇𝑊)
13 fcobijfs.5 . . 3 (𝜑𝑂𝑆)
144, 5, 6, 8, 9, 10, 11, 10, 12, 13mapfien 9477 . 2 (𝜑 → (𝑓𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋1-1-onto𝑌)
151ssrab3 4105 . . . . . 6 𝑋 ⊆ (𝑆m 𝑅)
1615sseli 4004 . . . . 5 (𝑓𝑋𝑓 ∈ (𝑆m 𝑅))
17 coass 6296 . . . . . 6 ((𝐺𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))
18 f1of 6862 . . . . . . . . 9 (𝐺:𝑆1-1-onto𝑇𝐺:𝑆𝑇)
199, 18syl 17 . . . . . . . 8 (𝜑𝐺:𝑆𝑇)
20 elmapi 8907 . . . . . . . 8 (𝑓 ∈ (𝑆m 𝑅) → 𝑓:𝑅𝑆)
21 fco 6771 . . . . . . . 8 ((𝐺:𝑆𝑇𝑓:𝑅𝑆) → (𝐺𝑓):𝑅𝑇)
2219, 20, 21syl2an 595 . . . . . . 7 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺𝑓):𝑅𝑇)
23 fcoi1 6795 . . . . . . 7 ((𝐺𝑓):𝑅𝑇 → ((𝐺𝑓) ∘ ( I ↾ 𝑅)) = (𝐺𝑓))
2422, 23syl 17 . . . . . 6 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → ((𝐺𝑓) ∘ ( I ↾ 𝑅)) = (𝐺𝑓))
2517, 24eqtr3id 2794 . . . . 5 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺𝑓))
2616, 25sylan2 592 . . . 4 ((𝜑𝑓𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺𝑓))
2726mpteq2dva 5266 . . 3 (𝜑 → (𝑓𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓𝑋 ↦ (𝐺𝑓)))
2827f1oeq1d 6857 . 2 (𝜑 → ((𝑓𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋1-1-onto𝑌 ↔ (𝑓𝑋 ↦ (𝐺𝑓)):𝑋1-1-onto𝑌))
2914, 28mpbid 232 1 (𝜑 → (𝑓𝑋 ↦ (𝐺𝑓)):𝑋1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cmpt 5249   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-1o 8522  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  eulerpartgbij  34337
  Copyright terms: Public domain W3C validator