Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs | Structured version Visualization version GIF version |
Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9024. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
fcobij.1 | ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
fcobij.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
fcobij.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
fcobij.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
fcobijfs.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑆) |
fcobijfs.6 | ⊢ 𝑄 = (𝐺‘𝑂) |
fcobijfs.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
fcobijfs.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} |
Ref | Expression |
---|---|
fcobijfs | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcobijfs.7 | . . . 4 ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} | |
2 | breq1 5056 | . . . . 5 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
3 | 2 | cbvrabv 3402 | . . . 4 ⊢ {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
4 | 1, 3 | eqtr4i 2768 | . . 3 ⊢ 𝑋 = {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} |
5 | fcobijfs.8 | . . 3 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} | |
6 | fcobijfs.6 | . . 3 ⊢ 𝑄 = (𝐺‘𝑂) | |
7 | f1oi 6698 | . . . 4 ⊢ ( I ↾ 𝑅):𝑅–1-1-onto→𝑅 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑅):𝑅–1-1-onto→𝑅) |
9 | fcobij.1 | . . 3 ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) | |
10 | fcobij.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
11 | fcobij.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
12 | fcobij.4 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
13 | fcobijfs.5 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑆) | |
14 | 4, 5, 6, 8, 9, 10, 11, 10, 12, 13 | mapfien 9024 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌) |
15 | 1 | ssrab3 3995 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑆 ↑m 𝑅) |
16 | 15 | sseli 3896 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑆 ↑m 𝑅)) |
17 | coass 6129 | . . . . . 6 ⊢ ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) | |
18 | f1of 6661 | . . . . . . . . 9 ⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
20 | elmapi 8530 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑆 ↑m 𝑅) → 𝑓:𝑅⟶𝑆) | |
21 | fco 6569 | . . . . . . . 8 ⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) | |
22 | 19, 20, 21 | syl2an 599 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
23 | fcoi1 6593 | . . . . . . 7 ⊢ ((𝐺 ∘ 𝑓):𝑅⟶𝑇 → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) |
25 | 17, 24 | eqtr3id 2792 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
26 | 16, 25 | sylan2 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
27 | 26 | mpteq2dva 5150 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓))) |
28 | 27 | f1oeq1d 6656 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) |
29 | 14, 28 | mpbid 235 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 class class class wbr 5053 ↦ cmpt 5135 I cid 5454 ↾ cres 5553 ∘ ccom 5555 ⟶wf 6376 –1-1-onto→wf1o 6379 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 finSupp cfsupp 8985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-1o 8202 df-map 8510 df-en 8627 df-fin 8630 df-fsupp 8986 |
This theorem is referenced by: eulerpartgbij 32051 |
Copyright terms: Public domain | W3C validator |