Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs | Structured version Visualization version GIF version |
Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9167. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
fcobij.1 | ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
fcobij.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
fcobij.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
fcobij.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
fcobijfs.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑆) |
fcobijfs.6 | ⊢ 𝑄 = (𝐺‘𝑂) |
fcobijfs.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
fcobijfs.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} |
Ref | Expression |
---|---|
fcobijfs | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcobijfs.7 | . . . 4 ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} | |
2 | breq1 5077 | . . . . 5 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
3 | 2 | cbvrabv 3426 | . . . 4 ⊢ {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
4 | 1, 3 | eqtr4i 2769 | . . 3 ⊢ 𝑋 = {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} |
5 | fcobijfs.8 | . . 3 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} | |
6 | fcobijfs.6 | . . 3 ⊢ 𝑄 = (𝐺‘𝑂) | |
7 | f1oi 6754 | . . . 4 ⊢ ( I ↾ 𝑅):𝑅–1-1-onto→𝑅 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑅):𝑅–1-1-onto→𝑅) |
9 | fcobij.1 | . . 3 ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) | |
10 | fcobij.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
11 | fcobij.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
12 | fcobij.4 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
13 | fcobijfs.5 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑆) | |
14 | 4, 5, 6, 8, 9, 10, 11, 10, 12, 13 | mapfien 9167 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌) |
15 | 1 | ssrab3 4015 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑆 ↑m 𝑅) |
16 | 15 | sseli 3917 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑆 ↑m 𝑅)) |
17 | coass 6169 | . . . . . 6 ⊢ ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) | |
18 | f1of 6716 | . . . . . . . . 9 ⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
20 | elmapi 8637 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑆 ↑m 𝑅) → 𝑓:𝑅⟶𝑆) | |
21 | fco 6624 | . . . . . . . 8 ⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) | |
22 | 19, 20, 21 | syl2an 596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
23 | fcoi1 6648 | . . . . . . 7 ⊢ ((𝐺 ∘ 𝑓):𝑅⟶𝑇 → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) |
25 | 17, 24 | eqtr3id 2792 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
26 | 16, 25 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
27 | 26 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓))) |
28 | 27 | f1oeq1d 6711 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) |
29 | 14, 28 | mpbid 231 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ∘ ccom 5593 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-1o 8297 df-map 8617 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: eulerpartgbij 32339 |
Copyright terms: Public domain | W3C validator |