| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs | Structured version Visualization version GIF version | ||
| Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9301. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| Ref | Expression |
|---|---|
| fcobij.1 | ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
| fcobij.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| fcobij.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| fcobij.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
| fcobijfs.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑆) |
| fcobijfs.6 | ⊢ 𝑄 = (𝐺‘𝑂) |
| fcobijfs.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
| fcobijfs.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} |
| Ref | Expression |
|---|---|
| fcobijfs | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcobijfs.7 | . . . 4 ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} | |
| 2 | breq1 5098 | . . . . 5 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
| 3 | 2 | cbvrabv 3406 | . . . 4 ⊢ {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
| 4 | 1, 3 | eqtr4i 2759 | . . 3 ⊢ 𝑋 = {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} |
| 5 | fcobijfs.8 | . . 3 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} | |
| 6 | fcobijfs.6 | . . 3 ⊢ 𝑄 = (𝐺‘𝑂) | |
| 7 | f1oi 6808 | . . . 4 ⊢ ( I ↾ 𝑅):𝑅–1-1-onto→𝑅 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑅):𝑅–1-1-onto→𝑅) |
| 9 | fcobij.1 | . . 3 ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) | |
| 10 | fcobij.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 11 | fcobij.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 12 | fcobij.4 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
| 13 | fcobijfs.5 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑆) | |
| 14 | 4, 5, 6, 8, 9, 10, 11, 10, 12, 13 | mapfien 9301 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌) |
| 15 | 1 | ssrab3 4031 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑆 ↑m 𝑅) |
| 16 | 15 | sseli 3926 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑆 ↑m 𝑅)) |
| 17 | coass 6220 | . . . . . 6 ⊢ ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) | |
| 18 | f1of 6770 | . . . . . . . . 9 ⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) | |
| 19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
| 20 | elmapi 8781 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑆 ↑m 𝑅) → 𝑓:𝑅⟶𝑆) | |
| 21 | fco 6682 | . . . . . . . 8 ⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) | |
| 22 | 19, 20, 21 | syl2an 596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
| 23 | fcoi1 6704 | . . . . . . 7 ⊢ ((𝐺 ∘ 𝑓):𝑅⟶𝑇 → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) |
| 25 | 17, 24 | eqtr3id 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
| 26 | 16, 25 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
| 27 | 26 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓))) |
| 28 | 27 | f1oeq1d 6765 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) |
| 29 | 14, 28 | mpbid 232 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5095 ↦ cmpt 5176 I cid 5515 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6484 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 finSupp cfsupp 9254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-1o 8393 df-map 8760 df-en 8878 df-dom 8879 df-fin 8881 df-fsupp 9255 |
| This theorem is referenced by: eulerpartgbij 34408 |
| Copyright terms: Public domain | W3C validator |