| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1elN | Structured version Visualization version GIF version | ||
| Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dia1.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia1elN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dia1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dia1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dia1.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | dia1N 41158 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
| 5 | 1, 3 | diaf11N 41154 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | f1ofun 6771 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 → Fun 𝐼) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) |
| 8 | 1, 3 | dia1eldmN 41146 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| 9 | fvelrn 7015 | . . 3 ⊢ ((Fun 𝐼 ∧ 𝑊 ∈ dom 𝐼) → (𝐼‘𝑊) ∈ ran 𝐼) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) ∈ ran 𝐼) |
| 11 | 4, 10 | eqeltrrd 2832 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 dom cdm 5619 ran crn 5620 Fun wfun 6481 –1-1-onto→wf1o 6486 ‘cfv 6487 HLchlt 39455 LHypclh 40089 LTrncltrn 40206 DIsoAcdia 41133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-riotaBAD 39058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-undef 8209 df-map 8758 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-p1 18336 df-lat 18344 df-clat 18411 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-llines 39603 df-lplanes 39604 df-lvols 39605 df-lines 39606 df-psubsp 39608 df-pmap 39609 df-padd 39901 df-lhyp 40093 df-laut 40094 df-ldil 40209 df-ltrn 40210 df-trl 40264 df-disoa 41134 |
| This theorem is referenced by: docaclN 41229 |
| Copyright terms: Public domain | W3C validator |