Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1elN Structured version   Visualization version   GIF version

Theorem dia1elN 40531
Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHypβ€˜πΎ)
dia1.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dia1.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dia1elN ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑇 ∈ ran 𝐼)

Proof of Theorem dia1elN
StepHypRef Expression
1 dia1.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 dia1.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 dia1.i . . 3 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
41, 2, 3dia1N 40530 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜π‘Š) = 𝑇)
51, 3diaf11N 40526 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
6 f1ofun 6844 . . . 4 (𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼 β†’ Fun 𝐼)
75, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Fun 𝐼)
81, 3dia1eldmN 40518 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ π‘Š ∈ dom 𝐼)
9 fvelrn 7089 . . 3 ((Fun 𝐼 ∧ π‘Š ∈ dom 𝐼) β†’ (πΌβ€˜π‘Š) ∈ ran 𝐼)
107, 8, 9syl2anc 582 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜π‘Š) ∈ ran 𝐼)
114, 10eqeltrrd 2829 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑇 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  dom cdm 5680  ran crn 5681  Fun wfun 6545  β€“1-1-ontoβ†’wf1o 6550  β€˜cfv 6551  HLchlt 38826  LHypclh 39461  LTrncltrn 39578  DIsoAcdia 40505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-riotaBAD 38429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 7997  df-2nd 7998  df-undef 8283  df-map 8851  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-llines 38975  df-lplanes 38976  df-lvols 38977  df-lines 38978  df-psubsp 38980  df-pmap 38981  df-padd 39273  df-lhyp 39465  df-laut 39466  df-ldil 39581  df-ltrn 39582  df-trl 39636  df-disoa 40506
This theorem is referenced by:  docaclN  40601
  Copyright terms: Public domain W3C validator