| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1elN | Structured version Visualization version GIF version | ||
| Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dia1.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia1elN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dia1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dia1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dia1.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | dia1N 41072 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
| 5 | 1, 3 | diaf11N 41068 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | f1ofun 6820 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 → Fun 𝐼) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) |
| 8 | 1, 3 | dia1eldmN 41060 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| 9 | fvelrn 7066 | . . 3 ⊢ ((Fun 𝐼 ∧ 𝑊 ∈ dom 𝐼) → (𝐼‘𝑊) ∈ ran 𝐼) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) ∈ ran 𝐼) |
| 11 | 4, 10 | eqeltrrd 2835 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ran crn 5655 Fun wfun 6525 –1-1-onto→wf1o 6530 ‘cfv 6531 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 DIsoAcdia 41047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-undef 8272 df-map 8842 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-disoa 41048 |
| This theorem is referenced by: docaclN 41143 |
| Copyright terms: Public domain | W3C validator |