![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1elN | Structured version Visualization version GIF version |
Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1.h | β’ π» = (LHypβπΎ) |
dia1.t | β’ π = ((LTrnβπΎ)βπ) |
dia1.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
dia1elN | β’ ((πΎ β HL β§ π β π») β π β ran πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia1.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | dia1.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
3 | dia1.i | . . 3 β’ πΌ = ((DIsoAβπΎ)βπ) | |
4 | 1, 2, 3 | dia1N 39912 | . 2 β’ ((πΎ β HL β§ π β π») β (πΌβπ) = π) |
5 | 1, 3 | diaf11N 39908 | . . . 4 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) |
6 | f1ofun 6832 | . . . 4 β’ (πΌ:dom πΌβ1-1-ontoβran πΌ β Fun πΌ) | |
7 | 5, 6 | syl 17 | . . 3 β’ ((πΎ β HL β§ π β π») β Fun πΌ) |
8 | 1, 3 | dia1eldmN 39900 | . . 3 β’ ((πΎ β HL β§ π β π») β π β dom πΌ) |
9 | fvelrn 7075 | . . 3 β’ ((Fun πΌ β§ π β dom πΌ) β (πΌβπ) β ran πΌ) | |
10 | 7, 8, 9 | syl2anc 584 | . 2 β’ ((πΎ β HL β§ π β π») β (πΌβπ) β ran πΌ) |
11 | 4, 10 | eqeltrrd 2834 | 1 β’ ((πΎ β HL β§ π β π») β π β ran πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 dom cdm 5675 ran crn 5676 Fun wfun 6534 β1-1-ontoβwf1o 6539 βcfv 6540 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 DIsoAcdia 39887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-disoa 39888 |
This theorem is referenced by: docaclN 39983 |
Copyright terms: Public domain | W3C validator |