Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1elN Structured version   Visualization version   GIF version

Theorem dia1elN 38349
Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1elN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)

Proof of Theorem dia1elN
StepHypRef Expression
1 dia1.h . . 3 𝐻 = (LHyp‘𝐾)
2 dia1.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dia1.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
41, 2, 3dia1N 38348 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
51, 3diaf11N 38344 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 f1ofun 6596 . . . 4 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
75, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
81, 3dia1eldmN 38336 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
9 fvelrn 6825 . . 3 ((Fun 𝐼𝑊 ∈ dom 𝐼) → (𝐼𝑊) ∈ ran 𝐼)
107, 8, 9syl2anc 587 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) ∈ ran 𝐼)
114, 10eqeltrrd 2894 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  dom cdm 5523  ran crn 5524  Fun wfun 6322  1-1-ontowf1o 6327  cfv 6328  HLchlt 36645  LHypclh 37279  LTrncltrn 37396  DIsoAcdia 38323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36248
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-undef 7926  df-map 8395  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-lplanes 36794  df-lvols 36795  df-lines 36796  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283  df-laut 37284  df-ldil 37399  df-ltrn 37400  df-trl 37454  df-disoa 38324
This theorem is referenced by:  docaclN  38419
  Copyright terms: Public domain W3C validator