| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1elN | Structured version Visualization version GIF version | ||
| Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dia1.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia1elN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dia1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dia1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dia1.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | dia1N 41049 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
| 5 | 1, 3 | diaf11N 41045 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 6 | f1ofun 6760 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 → Fun 𝐼) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) |
| 8 | 1, 3 | dia1eldmN 41037 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ dom 𝐼) |
| 9 | fvelrn 7003 | . . 3 ⊢ ((Fun 𝐼 ∧ 𝑊 ∈ dom 𝐼) → (𝐼‘𝑊) ∈ ran 𝐼) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) ∈ ran 𝐼) |
| 11 | 4, 10 | eqeltrrd 2829 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 ∈ ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5613 ran crn 5614 Fun wfun 6470 –1-1-onto→wf1o 6475 ‘cfv 6476 HLchlt 39346 LHypclh 39980 LTrncltrn 40097 DIsoAcdia 41024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-riotaBAD 38949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-1st 7915 df-2nd 7916 df-undef 8197 df-map 8746 df-proset 18187 df-poset 18206 df-plt 18221 df-lub 18237 df-glb 18238 df-join 18239 df-meet 18240 df-p0 18316 df-p1 18317 df-lat 18325 df-clat 18392 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-llines 39494 df-lplanes 39495 df-lvols 39496 df-lines 39497 df-psubsp 39499 df-pmap 39500 df-padd 39792 df-lhyp 39984 df-laut 39985 df-ldil 40100 df-ltrn 40101 df-trl 40155 df-disoa 41025 |
| This theorem is referenced by: docaclN 41120 |
| Copyright terms: Public domain | W3C validator |