Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1elN Structured version   Visualization version   GIF version

Theorem dia1elN 37208
Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1elN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)

Proof of Theorem dia1elN
StepHypRef Expression
1 dia1.h . . 3 𝐻 = (LHyp‘𝐾)
2 dia1.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dia1.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
41, 2, 3dia1N 37207 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
51, 3diaf11N 37203 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 f1ofun 6393 . . . 4 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
75, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
81, 3dia1eldmN 37195 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
9 fvelrn 6616 . . 3 ((Fun 𝐼𝑊 ∈ dom 𝐼) → (𝐼𝑊) ∈ ran 𝐼)
107, 8, 9syl2anc 579 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) ∈ ran 𝐼)
114, 10eqeltrrd 2860 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  dom cdm 5355  ran crn 5356  Fun wfun 6129  1-1-ontowf1o 6134  cfv 6135  HLchlt 35504  LHypclh 36138  LTrncltrn 36255  DIsoAcdia 37182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-riotaBAD 35107
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-undef 7681  df-map 8142  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-oposet 35330  df-ol 35332  df-oml 35333  df-covers 35420  df-ats 35421  df-atl 35452  df-cvlat 35476  df-hlat 35505  df-llines 35652  df-lplanes 35653  df-lvols 35654  df-lines 35655  df-psubsp 35657  df-pmap 35658  df-padd 35950  df-lhyp 36142  df-laut 36143  df-ldil 36258  df-ltrn 36259  df-trl 36313  df-disoa 37183
This theorem is referenced by:  docaclN  37278
  Copyright terms: Public domain W3C validator