Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1elN Structured version   Visualization version   GIF version

Theorem dia1elN 41050
Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1elN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)

Proof of Theorem dia1elN
StepHypRef Expression
1 dia1.h . . 3 𝐻 = (LHyp‘𝐾)
2 dia1.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dia1.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
41, 2, 3dia1N 41049 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
51, 3diaf11N 41045 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 f1ofun 6760 . . . 4 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
75, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
81, 3dia1eldmN 41037 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
9 fvelrn 7003 . . 3 ((Fun 𝐼𝑊 ∈ dom 𝐼) → (𝐼𝑊) ∈ ran 𝐼)
107, 8, 9syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) ∈ ran 𝐼)
114, 10eqeltrrd 2829 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5613  ran crn 5614  Fun wfun 6470  1-1-ontowf1o 6475  cfv 6476  HLchlt 39346  LHypclh 39980  LTrncltrn 40097  DIsoAcdia 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-riotaBAD 38949
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-iin 4941  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-1st 7915  df-2nd 7916  df-undef 8197  df-map 8746  df-proset 18187  df-poset 18206  df-plt 18221  df-lub 18237  df-glb 18238  df-join 18239  df-meet 18240  df-p0 18316  df-p1 18317  df-lat 18325  df-clat 18392  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-llines 39494  df-lplanes 39495  df-lvols 39496  df-lines 39497  df-psubsp 39499  df-pmap 39500  df-padd 39792  df-lhyp 39984  df-laut 39985  df-ldil 40100  df-ltrn 40101  df-trl 40155  df-disoa 41025
This theorem is referenced by:  docaclN  41120
  Copyright terms: Public domain W3C validator