MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Visualization version   GIF version

Theorem logf1o2 25241
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logf1o2 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))

Proof of Theorem logf1o2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 25156 . . . 4 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of1 6589 . . . 4 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
31, 2ax-mp 5 . . 3 log:(ℂ ∖ {0})–1-1→ran log
4 logcn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 25233 . . 3 𝐷 ⊆ (ℂ ∖ {0})
6 f1ores 6604 . . 3 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
73, 5, 6mp2an 691 . 2 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
8 f1ofun 6592 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
91, 8ax-mp 5 . . . . . 6 Fun log
10 f1of 6590 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
111, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})⟶ran log
1211fdmi 6498 . . . . . . 7 dom log = (ℂ ∖ {0})
135, 12sseqtrri 3952 . . . . . 6 𝐷 ⊆ dom log
14 funimass4 6705 . . . . . 6 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
159, 13, 14mp2an 691 . . . . 5 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
164ellogdm 25230 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1716simplbi 501 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
184logdmn0 25231 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1917, 18logcld 25162 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
2019imcld 14546 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
2117, 18logimcld 25163 . . . . . . . 8 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
2221simpld 498 . . . . . . 7 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
23 pire 25051 . . . . . . . . 9 π ∈ ℝ
2423a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2521simprd 499 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
264logdmnrp 25232 . . . . . . . . . 10 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
27 lognegb 25181 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2817, 18, 27syl2anc 587 . . . . . . . . . . 11 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2928necon3bbid 3024 . . . . . . . . . 10 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
3026, 29mpbid 235 . . . . . . . . 9 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
3130necomd 3042 . . . . . . . 8 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
3220, 24, 25, 31leneltd 10783 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
3323renegcli 10936 . . . . . . . . 9 -π ∈ ℝ
3433rexri 10688 . . . . . . . 8 -π ∈ ℝ*
3523rexri 10688 . . . . . . . 8 π ∈ ℝ*
36 elioo2 12767 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3734, 35, 36mp2an 691 . . . . . . 7 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3820, 22, 32, 37syl3anbrc 1340 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
39 imf 14464 . . . . . . 7 ℑ:ℂ⟶ℝ
40 ffn 6487 . . . . . . 7 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
41 elpreima 6805 . . . . . . 7 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
4239, 40, 41mp2b 10 . . . . . 6 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
4319, 38, 42sylanbrc 586 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4415, 43mprgbir 3121 . . . 4 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
45 elpreima 6805 . . . . . . 7 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4639, 40, 45mp2b 10 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
47 simpl 486 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
48 eliooord 12784 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4948adantl 485 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
5049simpld 498 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → -π < (ℑ‘𝑥))
5149simprd 499 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) < π)
52 imcl 14462 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
5352adantr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
54 ltle 10718 . . . . . . . . . . 11 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5553, 23, 54sylancl 589 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5651, 55mpd 15 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ≤ π)
57 ellogrn 25151 . . . . . . . . 9 (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) ≤ π))
5847, 50, 56, 57syl3anbrc 1340 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ran log)
59 logef 25173 . . . . . . . 8 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
6058, 59syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
61 efcl 15428 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6261adantr 484 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
6353adantr 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℝ)
6463recnd 10658 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
65 picn 25052 . . . . . . . . . . . . . 14 π ∈ ℂ
6665a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℂ)
67 pipos 25053 . . . . . . . . . . . . . . 15 0 < π
6823, 67gt0ne0ii 11165 . . . . . . . . . . . . . 14 π ≠ 0
6968a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠ 0)
7051adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π)
7165mulid1i 10634 . . . . . . . . . . . . . . . . . 18 (π · 1) = π
7270, 71breqtrrdi 5072 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π · 1))
73 1re 10630 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈ ℝ)
7523a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℝ)
7667a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 < π)
77 ltdivmul 11504 . . . . . . . . . . . . . . . . . 18 (((ℑ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7863, 74, 75, 76, 77syl112anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7972, 78mpbird 260 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < 1)
80 1e0p1 12128 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
8179, 80breqtrdi 5071 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < (0 + 1))
8263recoscld 15489 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℝ)
8363resincld 15488 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℝ)
8482, 83crimd 14583 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥)))
85 efeul 15507 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8786oveq1d 7150 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))))
8882recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℂ)
89 ax-icn 10585 . . . . . . . . . . . . . . . . . . . . . . . 24 i ∈ ℂ
9083recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℂ)
91 mulcl 10610 . . . . . . . . . . . . . . . . . . . . . . . 24 ((i ∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9289, 90, 91sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9388, 92addcld 10649 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℂ)
94 recl 14461 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
9594ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℝ)
9695recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℂ)
97 efcl 15428 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℂ)
99 efne0 15442 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ≠ 0)
10193, 98, 100divcan3d 11410 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
10287, 101eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
103 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
10495reefcld 15433 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℝ)
105103, 104, 100redivcld 11457 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) ∈ ℝ)
106102, 105eqeltrrd 2891 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℝ)
107106reim0d 14576 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = 0)
10884, 107eqtr3d 2835 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) = 0)
109 sineq0 25116 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝑥) ∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
11064, 109syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
111108, 110mpbid 235 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℤ)
112 0z 11980 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
113 zleltp1 12021 . . . . . . . . . . . . . . . 16 ((((ℑ‘𝑥) / π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
114111, 112, 113sylancl 589 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
11581, 114mpbird 260 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ≤ 0)
116 df-neg 10862 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
11765mulm1i 11074 . . . . . . . . . . . . . . . . . 18 (-1 · π) = -π
11850adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π < (ℑ‘𝑥))
119117, 118eqbrtrid 5065 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π) < (ℑ‘𝑥))
12073renegcli 10936 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈ ℝ)
122 ltmuldiv 11502 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
123121, 63, 75, 76, 122syl112anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
124119, 123mpbid 235 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 < ((ℑ‘𝑥) / π))
125116, 124eqbrtrrid 5066 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) < ((ℑ‘𝑥) / π))
126 zlem1lt 12022 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
127112, 111, 126sylancr 590 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
128125, 127mpbird 260 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤ ((ℑ‘𝑥) / π))
12963, 75, 69redivcld 11457 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℝ)
130 0re 10632 . . . . . . . . . . . . . . 15 0 ∈ ℝ
131 letri3 10715 . . . . . . . . . . . . . . 15 ((((ℑ‘𝑥) / π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
132129, 130, 131sylancl 589 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
133115, 128, 132mpbir2and 712 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) = 0)
13464, 66, 69, 133diveq0d 11412 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0)
135 reim0b 14470 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
136135ad2antrr 725 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
137134, 136mpbird 260 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)
138137rpefcld 15450 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ+)
139138ex 416 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+))
1404ellogdm 25230 . . . . . . . . 9 ((exp‘𝑥) ∈ 𝐷 ↔ ((exp‘𝑥) ∈ ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+)))
14162, 139, 140sylanbrc 586 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
142 funfvima2 6971 . . . . . . . . 9 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
1439, 13, 142mp2an 691 . . . . . . . 8 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
144141, 143syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
14560, 144eqeltrrd 2891 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
14646, 145sylbi 220 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
147146ssriv 3919 . . . 4 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
14844, 147eqssi 3931 . . 3 (log “ 𝐷) = (ℑ “ (-π(,)π))
149 f1oeq3 6581 . . 3 ((log “ 𝐷) = (ℑ “ (-π(,)π)) → ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))))
150148, 149ax-mp 5 . 2 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π)))
1517, 150mpbi 233 1 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cz 11969  +crp 12377  (,)cioo 12726  (,]cioc 12727  cre 14448  cim 14449  expce 15407  sincsin 15409  cosccos 15410  πcpi 15412  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  efopnlem2  25248
  Copyright terms: Public domain W3C validator