MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Visualization version   GIF version

Theorem logf1o2 26579
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logf1o2 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))

Proof of Theorem logf1o2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 26493 . . . 4 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of1 6758 . . . 4 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
31, 2ax-mp 5 . . 3 log:(ℂ ∖ {0})–1-1→ran log
4 logcn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26571 . . 3 𝐷 ⊆ (ℂ ∖ {0})
6 f1ores 6773 . . 3 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
73, 5, 6mp2an 692 . 2 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
8 f1ofun 6761 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
91, 8ax-mp 5 . . . . . 6 Fun log
10 f1of 6759 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
111, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})⟶ran log
1211fdmi 6658 . . . . . . 7 dom log = (ℂ ∖ {0})
135, 12sseqtrri 3982 . . . . . 6 𝐷 ⊆ dom log
14 funimass4 6881 . . . . . 6 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
159, 13, 14mp2an 692 . . . . 5 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
164ellogdm 26568 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1716simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
184logdmn0 26569 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1917, 18logcld 26499 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
2019imcld 15094 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
2117, 18logimcld 26500 . . . . . . . 8 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
2221simpld 494 . . . . . . 7 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
23 pire 26386 . . . . . . . . 9 π ∈ ℝ
2423a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2521simprd 495 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
264logdmnrp 26570 . . . . . . . . . 10 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
27 lognegb 26519 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2817, 18, 27syl2anc 584 . . . . . . . . . . 11 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2928necon3bbid 2963 . . . . . . . . . 10 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
3026, 29mpbid 232 . . . . . . . . 9 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
3130necomd 2981 . . . . . . . 8 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
3220, 24, 25, 31leneltd 11259 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
3323renegcli 11414 . . . . . . . . 9 -π ∈ ℝ
3433rexri 11162 . . . . . . . 8 -π ∈ ℝ*
3523rexri 11162 . . . . . . . 8 π ∈ ℝ*
36 elioo2 13278 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3734, 35, 36mp2an 692 . . . . . . 7 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3820, 22, 32, 37syl3anbrc 1344 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
39 imf 15012 . . . . . . 7 ℑ:ℂ⟶ℝ
40 ffn 6647 . . . . . . 7 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
41 elpreima 6986 . . . . . . 7 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
4239, 40, 41mp2b 10 . . . . . 6 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
4319, 38, 42sylanbrc 583 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4415, 43mprgbir 3052 . . . 4 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
45 elpreima 6986 . . . . . . 7 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4639, 40, 45mp2b 10 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
47 simpl 482 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
48 eliooord 13297 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4948adantl 481 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
5049simpld 494 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → -π < (ℑ‘𝑥))
5149simprd 495 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) < π)
52 imcl 15010 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
54 ltle 11193 . . . . . . . . . . 11 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5553, 23, 54sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5651, 55mpd 15 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ≤ π)
57 ellogrn 26488 . . . . . . . . 9 (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) ≤ π))
5847, 50, 56, 57syl3anbrc 1344 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ran log)
59 logef 26510 . . . . . . . 8 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
6058, 59syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
61 efcl 15981 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6261adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
6353adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℝ)
6463recnd 11132 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
65 picn 26387 . . . . . . . . . . . . . 14 π ∈ ℂ
6665a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℂ)
67 pipos 26388 . . . . . . . . . . . . . . 15 0 < π
6823, 67gt0ne0ii 11645 . . . . . . . . . . . . . 14 π ≠ 0
6968a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠ 0)
7051adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π)
7165mulridi 11108 . . . . . . . . . . . . . . . . . 18 (π · 1) = π
7270, 71breqtrrdi 5131 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π · 1))
73 1re 11104 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈ ℝ)
7523a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℝ)
7667a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 < π)
77 ltdivmul 11989 . . . . . . . . . . . . . . . . . 18 (((ℑ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7863, 74, 75, 76, 77syl112anc 1376 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7972, 78mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < 1)
80 1e0p1 12622 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
8179, 80breqtrdi 5130 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < (0 + 1))
8263recoscld 16045 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℝ)
8363resincld 16044 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℝ)
8482, 83crimd 15131 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥)))
85 efeul 16063 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8685ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8786oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))))
8882recnd 11132 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℂ)
89 ax-icn 11057 . . . . . . . . . . . . . . . . . . . . . . . 24 i ∈ ℂ
9083recnd 11132 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℂ)
91 mulcl 11082 . . . . . . . . . . . . . . . . . . . . . . . 24 ((i ∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9289, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9388, 92addcld 11123 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℂ)
94 recl 15009 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
9594ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℝ)
9695recnd 11132 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℂ)
97 efcl 15981 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℂ)
99 efne0 15997 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ≠ 0)
10193, 98, 100divcan3d 11894 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
10287, 101eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
103 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
10495reefcld 15987 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℝ)
105103, 104, 100redivcld 11941 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) ∈ ℝ)
106102, 105eqeltrrd 2830 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℝ)
107106reim0d 15124 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = 0)
10884, 107eqtr3d 2767 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) = 0)
109 sineq0 26453 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝑥) ∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
11064, 109syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
111108, 110mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℤ)
112 0z 12471 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
113 zleltp1 12515 . . . . . . . . . . . . . . . 16 ((((ℑ‘𝑥) / π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
114111, 112, 113sylancl 586 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
11581, 114mpbird 257 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ≤ 0)
116 df-neg 11339 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
11765mulm1i 11554 . . . . . . . . . . . . . . . . . 18 (-1 · π) = -π
11850adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π < (ℑ‘𝑥))
119117, 118eqbrtrid 5124 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π) < (ℑ‘𝑥))
12073renegcli 11414 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈ ℝ)
122 ltmuldiv 11987 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
123121, 63, 75, 76, 122syl112anc 1376 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
124119, 123mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 < ((ℑ‘𝑥) / π))
125116, 124eqbrtrrid 5125 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) < ((ℑ‘𝑥) / π))
126 zlem1lt 12516 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
127112, 111, 126sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
128125, 127mpbird 257 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤ ((ℑ‘𝑥) / π))
12963, 75, 69redivcld 11941 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℝ)
130 0re 11106 . . . . . . . . . . . . . . 15 0 ∈ ℝ
131 letri3 11190 . . . . . . . . . . . . . . 15 ((((ℑ‘𝑥) / π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
132129, 130, 131sylancl 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
133115, 128, 132mpbir2and 713 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) = 0)
13464, 66, 69, 133diveq0d 11896 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0)
135 reim0b 15018 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
136135ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
137134, 136mpbird 257 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)
138137rpefcld 16006 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ+)
139138ex 412 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+))
1404ellogdm 26568 . . . . . . . . 9 ((exp‘𝑥) ∈ 𝐷 ↔ ((exp‘𝑥) ∈ ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+)))
14162, 139, 140sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
142 funfvima2 7160 . . . . . . . . 9 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
1439, 13, 142mp2an 692 . . . . . . . 8 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
144141, 143syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
14560, 144eqeltrrd 2830 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
14646, 145sylbi 217 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
147146ssriv 3936 . . . 4 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
14844, 147eqssi 3949 . . 3 (log “ 𝐷) = (ℑ “ (-π(,)π))
149 f1oeq3 6749 . . 3 ((log “ 𝐷) = (ℑ “ (-π(,)π)) → ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))))
150148, 149ax-mp 5 . 2 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π)))
1517, 150mpbi 230 1 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  cdif 3897  wss 3900  {csn 4574   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  1-1wf1 6474  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999  ici 11000   + caddc 11001   · cmul 11003  -∞cmnf 11136  *cxr 11137   < clt 11138  cle 11139  cmin 11336  -cneg 11337   / cdiv 11766  cz 12460  +crp 12882  (,)cioo 13237  (,]cioc 13238  cre 14996  cim 14997  expce 15960  sincsin 15962  cosccos 15963  πcpi 15965  logclog 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485
This theorem is referenced by:  efopnlem2  26586
  Copyright terms: Public domain W3C validator