| Step | Hyp | Ref
| Expression |
| 1 | | logf1o 26530 |
. . . 4
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
| 2 | | f1of1 6822 |
. . . 4
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})–1-1→ran log) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢
log:(ℂ ∖ {0})–1-1→ran log |
| 4 | | logcn.d |
. . . 4
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
| 5 | 4 | logdmss 26608 |
. . 3
⊢ 𝐷 ⊆ (ℂ ∖
{0}) |
| 6 | | f1ores 6837 |
. . 3
⊢
((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log
↾ 𝐷):𝐷–1-1-onto→(log
“ 𝐷)) |
| 7 | 3, 5, 6 | mp2an 692 |
. 2
⊢ (log
↾ 𝐷):𝐷–1-1-onto→(log
“ 𝐷) |
| 8 | | f1ofun 6825 |
. . . . . . 7
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → Fun log) |
| 9 | 1, 8 | ax-mp 5 |
. . . . . 6
⊢ Fun
log |
| 10 | | f1of 6823 |
. . . . . . . . 9
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
| 11 | 1, 10 | ax-mp 5 |
. . . . . . . 8
⊢
log:(ℂ ∖ {0})⟶ran log |
| 12 | 11 | fdmi 6722 |
. . . . . . 7
⊢ dom log =
(ℂ ∖ {0}) |
| 13 | 5, 12 | sseqtrri 4013 |
. . . . . 6
⊢ 𝐷 ⊆ dom
log |
| 14 | | funimass4 6948 |
. . . . . 6
⊢ ((Fun log
∧ 𝐷 ⊆ dom log)
→ ((log “ 𝐷)
⊆ (◡ℑ “
(-π(,)π)) ↔ ∀𝑥 ∈ 𝐷 (log‘𝑥) ∈ (◡ℑ “
(-π(,)π)))) |
| 15 | 9, 13, 14 | mp2an 692 |
. . . . 5
⊢ ((log
“ 𝐷) ⊆ (◡ℑ “ (-π(,)π)) ↔
∀𝑥 ∈ 𝐷 (log‘𝑥) ∈ (◡ℑ “
(-π(,)π))) |
| 16 | 4 | ellogdm 26605 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ+))) |
| 17 | 16 | simplbi 497 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 18 | 4 | logdmn0 26606 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 19 | 17, 18 | logcld 26536 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
| 20 | 19 | imcld 15219 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
ℝ) |
| 21 | 17, 18 | logimcld 26537 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (-π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π)) |
| 22 | 21 | simpld 494 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → -π <
(ℑ‘(log‘𝑥))) |
| 23 | | pire 26423 |
. . . . . . . . 9
⊢ π
∈ ℝ |
| 24 | 23 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → π ∈
ℝ) |
| 25 | 21 | simprd 495 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ≤ π) |
| 26 | 4 | logdmnrp 26607 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ¬ -𝑥 ∈ ℝ+) |
| 27 | | lognegb 26556 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+
↔ (ℑ‘(log‘𝑥)) = π)) |
| 28 | 17, 18, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → (-𝑥 ∈ ℝ+ ↔
(ℑ‘(log‘𝑥)) = π)) |
| 29 | 28 | necon3bbid 2970 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (¬ -𝑥 ∈ ℝ+ ↔
(ℑ‘(log‘𝑥)) ≠ π)) |
| 30 | 26, 29 | mpbid 232 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ≠ π) |
| 31 | 30 | necomd 2988 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → π ≠
(ℑ‘(log‘𝑥))) |
| 32 | 20, 24, 25, 31 | leneltd 11394 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) < π) |
| 33 | 23 | renegcli 11549 |
. . . . . . . . 9
⊢ -π
∈ ℝ |
| 34 | 33 | rexri 11298 |
. . . . . . . 8
⊢ -π
∈ ℝ* |
| 35 | 23 | rexri 11298 |
. . . . . . . 8
⊢ π
∈ ℝ* |
| 36 | | elioo2 13408 |
. . . . . . . 8
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ*) →
((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔
((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))) |
| 37 | 34, 35, 36 | mp2an 692 |
. . . . . . 7
⊢
((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔
((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π <
(ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)) |
| 38 | 20, 22, 32, 37 | syl3anbrc 1344 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈
(-π(,)π)) |
| 39 | | imf 15137 |
. . . . . . 7
⊢
ℑ:ℂ⟶ℝ |
| 40 | | ffn 6711 |
. . . . . . 7
⊢
(ℑ:ℂ⟶ℝ → ℑ Fn
ℂ) |
| 41 | | elpreima 7053 |
. . . . . . 7
⊢ (ℑ
Fn ℂ → ((log‘𝑥) ∈ (◡ℑ “ (-π(,)π)) ↔
((log‘𝑥) ∈
ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))) |
| 42 | 39, 40, 41 | mp2b 10 |
. . . . . 6
⊢
((log‘𝑥)
∈ (◡ℑ “
(-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧
(ℑ‘(log‘𝑥)) ∈ (-π(,)π))) |
| 43 | 19, 38, 42 | sylanbrc 583 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ (◡ℑ “
(-π(,)π))) |
| 44 | 15, 43 | mprgbir 3059 |
. . . 4
⊢ (log
“ 𝐷) ⊆ (◡ℑ “
(-π(,)π)) |
| 45 | | elpreima 7053 |
. . . . . . 7
⊢ (ℑ
Fn ℂ → (𝑥 ∈
(◡ℑ “ (-π(,)π))
↔ (𝑥 ∈ ℂ
∧ (ℑ‘𝑥)
∈ (-π(,)π)))) |
| 46 | 39, 40, 45 | mp2b 10 |
. . . . . 6
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) ↔
(𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π))) |
| 47 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → 𝑥
∈ ℂ) |
| 48 | | eliooord 13427 |
. . . . . . . . . . 11
⊢
((ℑ‘𝑥)
∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)) |
| 49 | 48 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)) |
| 50 | 49 | simpld 494 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → -π < (ℑ‘𝑥)) |
| 51 | 49 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (ℑ‘𝑥) < π) |
| 52 | | imcl 15135 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ →
(ℑ‘𝑥) ∈
ℝ) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (ℑ‘𝑥) ∈ ℝ) |
| 54 | | ltle 11328 |
. . . . . . . . . . 11
⊢
(((ℑ‘𝑥)
∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π →
(ℑ‘𝑥) ≤
π)) |
| 55 | 53, 23, 54 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π)) |
| 56 | 51, 55 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (ℑ‘𝑥) ≤ π) |
| 57 | | ellogrn 26525 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π <
(ℑ‘𝑥) ∧
(ℑ‘𝑥) ≤
π)) |
| 58 | 47, 50, 56, 57 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → 𝑥
∈ ran log) |
| 59 | | logef 26547 |
. . . . . . . 8
⊢ (𝑥 ∈ ran log →
(log‘(exp‘𝑥)) =
𝑥) |
| 60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥) |
| 61 | | efcl 16103 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
| 62 | 61 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (exp‘𝑥) ∈ ℂ) |
| 63 | 53 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈
ℝ) |
| 64 | 63 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈
ℂ) |
| 65 | | picn 26424 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
| 66 | 65 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈
ℂ) |
| 67 | | pipos 26425 |
. . . . . . . . . . . . . . 15
⊢ 0 <
π |
| 68 | 23, 67 | gt0ne0ii 11778 |
. . . . . . . . . . . . . 14
⊢ π ≠
0 |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠
0) |
| 70 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π) |
| 71 | 65 | mulridi 11244 |
. . . . . . . . . . . . . . . . . 18
⊢ (π
· 1) = π |
| 72 | 70, 71 | breqtrrdi 5166 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π ·
1)) |
| 73 | | 1re 11240 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈
ℝ) |
| 75 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈
ℝ) |
| 76 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 <
π) |
| 77 | | ltdivmul 12122 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℑ‘𝑥)
∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 <
π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π ·
1))) |
| 78 | 63, 74, 75, 76, 77 | syl112anc 1376 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(((ℑ‘𝑥) / π)
< 1 ↔ (ℑ‘𝑥) < (π · 1))) |
| 79 | 72, 78 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
< 1) |
| 80 | | 1e0p1 12755 |
. . . . . . . . . . . . . . . 16
⊢ 1 = (0 +
1) |
| 81 | 79, 80 | breqtrdi 5165 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
< (0 + 1)) |
| 82 | 63 | recoscld 16167 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(cos‘(ℑ‘𝑥)) ∈ ℝ) |
| 83 | 63 | resincld 16166 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(sin‘(ℑ‘𝑥)) ∈ ℝ) |
| 84 | 82, 83 | crimd 15256 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(ℑ‘((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥))) |
| 85 | | efeul 16185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) =
((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥)))))) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) =
((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥)))))) |
| 87 | 86 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) /
(exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) ·
((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥)))) |
| 88 | 82 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(cos‘(ℑ‘𝑥)) ∈ ℂ) |
| 89 | | ax-icn 11193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ i ∈
ℂ |
| 90 | 83 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(sin‘(ℑ‘𝑥)) ∈ ℂ) |
| 91 | | mulcl 11218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((i
∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i ·
(sin‘(ℑ‘𝑥))) ∈ ℂ) |
| 92 | 89, 90, 91 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i ·
(sin‘(ℑ‘𝑥))) ∈ ℂ) |
| 93 | 88, 92 | addcld 11259 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥)))) ∈ ℂ) |
| 94 | | recl 15134 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℂ →
(ℜ‘𝑥) ∈
ℝ) |
| 95 | 94 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈
ℝ) |
| 96 | 95 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈
ℂ) |
| 97 | | efcl 16103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((ℜ‘𝑥)
∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(exp‘(ℜ‘𝑥)) ∈ ℂ) |
| 99 | | efne0 16119 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((ℜ‘𝑥)
∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0) |
| 100 | 96, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(exp‘(ℜ‘𝑥)) ≠ 0) |
| 101 | 93, 98, 100 | divcan3d 12027 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) =
((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) |
| 102 | 87, 101 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) /
(exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) |
| 103 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈
ℝ) |
| 104 | 95 | reefcld 16109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(exp‘(ℜ‘𝑥)) ∈ ℝ) |
| 105 | 103, 104,
100 | redivcld 12074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) /
(exp‘(ℜ‘𝑥))) ∈ ℝ) |
| 106 | 102, 105 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥)))) ∈ ℝ) |
| 107 | 106 | reim0d 15249 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(ℑ‘((cos‘(ℑ‘𝑥)) + (i ·
(sin‘(ℑ‘𝑥))))) = 0) |
| 108 | 84, 107 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(sin‘(ℑ‘𝑥)) = 0) |
| 109 | | sineq0 26490 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℑ‘𝑥)
∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈
ℤ)) |
| 110 | 64, 109 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈
ℤ)) |
| 111 | 108, 110 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
∈ ℤ) |
| 112 | | 0z 12604 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
| 113 | | zleltp1 12648 |
. . . . . . . . . . . . . . . 16
⊢
((((ℑ‘𝑥)
/ π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔
((ℑ‘𝑥) / π)
< (0 + 1))) |
| 114 | 111, 112,
113 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(((ℑ‘𝑥) / π)
≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1))) |
| 115 | 81, 114 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
≤ 0) |
| 116 | | df-neg 11474 |
. . . . . . . . . . . . . . . 16
⊢ -1 = (0
− 1) |
| 117 | 65 | mulm1i 11687 |
. . . . . . . . . . . . . . . . . 18
⊢ (-1
· π) = -π |
| 118 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π <
(ℑ‘𝑥)) |
| 119 | 117, 118 | eqbrtrid 5159 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π)
< (ℑ‘𝑥)) |
| 120 | 73 | renegcli 11549 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ∈
ℝ |
| 121 | 120 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈
ℝ) |
| 122 | | ltmuldiv 12120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-1
∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ
∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 <
((ℑ‘𝑥) /
π))) |
| 123 | 121, 63, 75, 76, 122 | syl112anc 1376 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π)
< (ℑ‘𝑥)
↔ -1 < ((ℑ‘𝑥) / π))) |
| 124 | 119, 123 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 <
((ℑ‘𝑥) /
π)) |
| 125 | 116, 124 | eqbrtrrid 5160 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) <
((ℑ‘𝑥) /
π)) |
| 126 | | zlem1lt 12649 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤
((ℑ‘𝑥) / π)
↔ (0 − 1) < ((ℑ‘𝑥) / π))) |
| 127 | 112, 111,
126 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤
((ℑ‘𝑥) / π)
↔ (0 − 1) < ((ℑ‘𝑥) / π))) |
| 128 | 125, 127 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤
((ℑ‘𝑥) /
π)) |
| 129 | 63, 75, 69 | redivcld 12074 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
∈ ℝ) |
| 130 | | 0re 11242 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 131 | | letri3 11325 |
. . . . . . . . . . . . . . 15
⊢
((((ℑ‘𝑥)
/ π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔
(((ℑ‘𝑥) / π)
≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π)))) |
| 132 | 129, 130,
131 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
(((ℑ‘𝑥) / π)
= 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤
((ℑ‘𝑥) /
π)))) |
| 133 | 115, 128,
132 | mpbir2and 713 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) →
((ℑ‘𝑥) / π)
= 0) |
| 134 | 64, 66, 69, 133 | diveq0d 12029 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0) |
| 135 | | reim0b 15143 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔
(ℑ‘𝑥) =
0)) |
| 136 | 135 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0)) |
| 137 | 134, 136 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ) |
| 138 | 137 | rpefcld 16128 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈
ℝ+) |
| 139 | 138 | ex 412 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈
ℝ+)) |
| 140 | 4 | ellogdm 26605 |
. . . . . . . . 9
⊢
((exp‘𝑥)
∈ 𝐷 ↔
((exp‘𝑥) ∈
ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈
ℝ+))) |
| 141 | 62, 139, 140 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (exp‘𝑥) ∈ 𝐷) |
| 142 | | funfvima2 7228 |
. . . . . . . . 9
⊢ ((Fun log
∧ 𝐷 ⊆ dom log)
→ ((exp‘𝑥)
∈ 𝐷 →
(log‘(exp‘𝑥))
∈ (log “ 𝐷))) |
| 143 | 9, 13, 142 | mp2an 692 |
. . . . . . . 8
⊢
((exp‘𝑥)
∈ 𝐷 →
(log‘(exp‘𝑥))
∈ (log “ 𝐷)) |
| 144 | 141, 143 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)) |
| 145 | 60, 144 | eqeltrrd 2836 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧
(ℑ‘𝑥) ∈
(-π(,)π)) → 𝑥
∈ (log “ 𝐷)) |
| 146 | 46, 145 | sylbi 217 |
. . . . 5
⊢ (𝑥 ∈ (◡ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷)) |
| 147 | 146 | ssriv 3967 |
. . . 4
⊢ (◡ℑ “ (-π(,)π)) ⊆ (log
“ 𝐷) |
| 148 | 44, 147 | eqssi 3980 |
. . 3
⊢ (log
“ 𝐷) = (◡ℑ “
(-π(,)π)) |
| 149 | | f1oeq3 6813 |
. . 3
⊢ ((log
“ 𝐷) = (◡ℑ “ (-π(,)π)) → ((log
↾ 𝐷):𝐷–1-1-onto→(log
“ 𝐷) ↔ (log
↾ 𝐷):𝐷–1-1-onto→(◡ℑ “
(-π(,)π)))) |
| 150 | 148, 149 | ax-mp 5 |
. 2
⊢ ((log
↾ 𝐷):𝐷–1-1-onto→(log
“ 𝐷) ↔ (log
↾ 𝐷):𝐷–1-1-onto→(◡ℑ “
(-π(,)π))) |
| 151 | 7, 150 | mpbi 230 |
1
⊢ (log
↾ 𝐷):𝐷–1-1-onto→(◡ℑ “
(-π(,)π)) |