MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Visualization version   GIF version

Theorem logf1o2 26693
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logf1o2 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))

Proof of Theorem logf1o2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 26607 . . . 4 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of1 6846 . . . 4 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
31, 2ax-mp 5 . . 3 log:(ℂ ∖ {0})–1-1→ran log
4 logcn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 26685 . . 3 𝐷 ⊆ (ℂ ∖ {0})
6 f1ores 6861 . . 3 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
73, 5, 6mp2an 692 . 2 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
8 f1ofun 6849 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
91, 8ax-mp 5 . . . . . 6 Fun log
10 f1of 6847 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
111, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})⟶ran log
1211fdmi 6746 . . . . . . 7 dom log = (ℂ ∖ {0})
135, 12sseqtrri 4032 . . . . . 6 𝐷 ⊆ dom log
14 funimass4 6972 . . . . . 6 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
159, 13, 14mp2an 692 . . . . 5 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
164ellogdm 26682 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1716simplbi 497 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
184logdmn0 26683 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1917, 18logcld 26613 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
2019imcld 15235 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
2117, 18logimcld 26614 . . . . . . . 8 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
2221simpld 494 . . . . . . 7 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
23 pire 26501 . . . . . . . . 9 π ∈ ℝ
2423a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2521simprd 495 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
264logdmnrp 26684 . . . . . . . . . 10 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
27 lognegb 26633 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2817, 18, 27syl2anc 584 . . . . . . . . . . 11 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2928necon3bbid 2977 . . . . . . . . . 10 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
3026, 29mpbid 232 . . . . . . . . 9 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
3130necomd 2995 . . . . . . . 8 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
3220, 24, 25, 31leneltd 11416 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
3323renegcli 11571 . . . . . . . . 9 -π ∈ ℝ
3433rexri 11320 . . . . . . . 8 -π ∈ ℝ*
3523rexri 11320 . . . . . . . 8 π ∈ ℝ*
36 elioo2 13429 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3734, 35, 36mp2an 692 . . . . . . 7 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3820, 22, 32, 37syl3anbrc 1343 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
39 imf 15153 . . . . . . 7 ℑ:ℂ⟶ℝ
40 ffn 6735 . . . . . . 7 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
41 elpreima 7077 . . . . . . 7 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
4239, 40, 41mp2b 10 . . . . . 6 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
4319, 38, 42sylanbrc 583 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4415, 43mprgbir 3067 . . . 4 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
45 elpreima 7077 . . . . . . 7 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4639, 40, 45mp2b 10 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
47 simpl 482 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
48 eliooord 13447 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4948adantl 481 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
5049simpld 494 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → -π < (ℑ‘𝑥))
5149simprd 495 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) < π)
52 imcl 15151 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
5352adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
54 ltle 11350 . . . . . . . . . . 11 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5553, 23, 54sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5651, 55mpd 15 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ≤ π)
57 ellogrn 26602 . . . . . . . . 9 (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) ≤ π))
5847, 50, 56, 57syl3anbrc 1343 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ran log)
59 logef 26624 . . . . . . . 8 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
6058, 59syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
61 efcl 16119 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6261adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
6353adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℝ)
6463recnd 11290 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
65 picn 26502 . . . . . . . . . . . . . 14 π ∈ ℂ
6665a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℂ)
67 pipos 26503 . . . . . . . . . . . . . . 15 0 < π
6823, 67gt0ne0ii 11800 . . . . . . . . . . . . . 14 π ≠ 0
6968a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠ 0)
7051adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π)
7165mulridi 11266 . . . . . . . . . . . . . . . . . 18 (π · 1) = π
7270, 71breqtrrdi 5184 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π · 1))
73 1re 11262 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈ ℝ)
7523a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℝ)
7667a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 < π)
77 ltdivmul 12144 . . . . . . . . . . . . . . . . . 18 (((ℑ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7863, 74, 75, 76, 77syl112anc 1375 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7972, 78mpbird 257 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < 1)
80 1e0p1 12777 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
8179, 80breqtrdi 5183 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < (0 + 1))
8263recoscld 16181 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℝ)
8363resincld 16180 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℝ)
8482, 83crimd 15272 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥)))
85 efeul 16199 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8685ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8786oveq1d 7447 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))))
8882recnd 11290 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℂ)
89 ax-icn 11215 . . . . . . . . . . . . . . . . . . . . . . . 24 i ∈ ℂ
9083recnd 11290 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℂ)
91 mulcl 11240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((i ∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9289, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9388, 92addcld 11281 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℂ)
94 recl 15150 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
9594ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℝ)
9695recnd 11290 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℂ)
97 efcl 16119 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℂ)
99 efne0 16134 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ≠ 0)
10193, 98, 100divcan3d 12049 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
10287, 101eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
103 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
10495reefcld 16125 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℝ)
105103, 104, 100redivcld 12096 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) ∈ ℝ)
106102, 105eqeltrrd 2841 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℝ)
107106reim0d 15265 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = 0)
10884, 107eqtr3d 2778 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) = 0)
109 sineq0 26567 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝑥) ∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
11064, 109syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
111108, 110mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℤ)
112 0z 12626 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
113 zleltp1 12670 . . . . . . . . . . . . . . . 16 ((((ℑ‘𝑥) / π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
114111, 112, 113sylancl 586 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
11581, 114mpbird 257 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ≤ 0)
116 df-neg 11496 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
11765mulm1i 11709 . . . . . . . . . . . . . . . . . 18 (-1 · π) = -π
11850adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π < (ℑ‘𝑥))
119117, 118eqbrtrid 5177 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π) < (ℑ‘𝑥))
12073renegcli 11571 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈ ℝ)
122 ltmuldiv 12142 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
123121, 63, 75, 76, 122syl112anc 1375 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
124119, 123mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 < ((ℑ‘𝑥) / π))
125116, 124eqbrtrrid 5178 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) < ((ℑ‘𝑥) / π))
126 zlem1lt 12671 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
127112, 111, 126sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
128125, 127mpbird 257 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤ ((ℑ‘𝑥) / π))
12963, 75, 69redivcld 12096 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℝ)
130 0re 11264 . . . . . . . . . . . . . . 15 0 ∈ ℝ
131 letri3 11347 . . . . . . . . . . . . . . 15 ((((ℑ‘𝑥) / π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
132129, 130, 131sylancl 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
133115, 128, 132mpbir2and 713 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) = 0)
13464, 66, 69, 133diveq0d 12051 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0)
135 reim0b 15159 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
136135ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
137134, 136mpbird 257 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)
138137rpefcld 16142 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ+)
139138ex 412 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+))
1404ellogdm 26682 . . . . . . . . 9 ((exp‘𝑥) ∈ 𝐷 ↔ ((exp‘𝑥) ∈ ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+)))
14162, 139, 140sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
142 funfvima2 7252 . . . . . . . . 9 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
1439, 13, 142mp2an 692 . . . . . . . 8 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
144141, 143syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
14560, 144eqeltrrd 2841 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
14646, 145sylbi 217 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
147146ssriv 3986 . . . 4 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
14844, 147eqssi 3999 . . 3 (log “ 𝐷) = (ℑ “ (-π(,)π))
149 f1oeq3 6837 . . 3 ((log “ 𝐷) = (ℑ “ (-π(,)π)) → ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))))
150148, 149ax-mp 5 . 2 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π)))
1517, 150mpbi 230 1 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cdif 3947  wss 3950  {csn 4625   class class class wbr 5142  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   + caddc 11159   · cmul 11161  -∞cmnf 11294  *cxr 11295   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  cz 12615  +crp 13035  (,)cioo 13388  (,]cioc 13389  cre 15137  cim 15138  expce 16098  sincsin 16100  cosccos 16101  πcpi 16103  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  efopnlem2  26700
  Copyright terms: Public domain W3C validator