MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Visualization version   GIF version

Theorem logf1o2 26005
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logf1o2 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))

Proof of Theorem logf1o2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 25920 . . . 4 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of1 6783 . . . 4 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
31, 2ax-mp 5 . . 3 log:(ℂ ∖ {0})–1-1→ran log
4 logcn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 25997 . . 3 𝐷 ⊆ (ℂ ∖ {0})
6 f1ores 6798 . . 3 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
73, 5, 6mp2an 690 . 2 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
8 f1ofun 6786 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
91, 8ax-mp 5 . . . . . 6 Fun log
10 f1of 6784 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
111, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})⟶ran log
1211fdmi 6680 . . . . . . 7 dom log = (ℂ ∖ {0})
135, 12sseqtrri 3981 . . . . . 6 𝐷 ⊆ dom log
14 funimass4 6907 . . . . . 6 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
159, 13, 14mp2an 690 . . . . 5 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
164ellogdm 25994 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1716simplbi 498 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
184logdmn0 25995 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1917, 18logcld 25926 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
2019imcld 15080 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
2117, 18logimcld 25927 . . . . . . . 8 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
2221simpld 495 . . . . . . 7 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
23 pire 25815 . . . . . . . . 9 π ∈ ℝ
2423a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2521simprd 496 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
264logdmnrp 25996 . . . . . . . . . 10 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
27 lognegb 25945 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2817, 18, 27syl2anc 584 . . . . . . . . . . 11 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2928necon3bbid 2981 . . . . . . . . . 10 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
3026, 29mpbid 231 . . . . . . . . 9 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
3130necomd 2999 . . . . . . . 8 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
3220, 24, 25, 31leneltd 11309 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
3323renegcli 11462 . . . . . . . . 9 -π ∈ ℝ
3433rexri 11213 . . . . . . . 8 -π ∈ ℝ*
3523rexri 11213 . . . . . . . 8 π ∈ ℝ*
36 elioo2 13305 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3734, 35, 36mp2an 690 . . . . . . 7 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3820, 22, 32, 37syl3anbrc 1343 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
39 imf 14998 . . . . . . 7 ℑ:ℂ⟶ℝ
40 ffn 6668 . . . . . . 7 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
41 elpreima 7008 . . . . . . 7 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
4239, 40, 41mp2b 10 . . . . . 6 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
4319, 38, 42sylanbrc 583 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4415, 43mprgbir 3071 . . . 4 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
45 elpreima 7008 . . . . . . 7 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4639, 40, 45mp2b 10 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
47 simpl 483 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
48 eliooord 13323 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4948adantl 482 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
5049simpld 495 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → -π < (ℑ‘𝑥))
5149simprd 496 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) < π)
52 imcl 14996 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
5352adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
54 ltle 11243 . . . . . . . . . . 11 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5553, 23, 54sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5651, 55mpd 15 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ≤ π)
57 ellogrn 25915 . . . . . . . . 9 (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) ≤ π))
5847, 50, 56, 57syl3anbrc 1343 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ran log)
59 logef 25937 . . . . . . . 8 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
6058, 59syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
61 efcl 15965 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6261adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
6353adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℝ)
6463recnd 11183 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
65 picn 25816 . . . . . . . . . . . . . 14 π ∈ ℂ
6665a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℂ)
67 pipos 25817 . . . . . . . . . . . . . . 15 0 < π
6823, 67gt0ne0ii 11691 . . . . . . . . . . . . . 14 π ≠ 0
6968a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠ 0)
7051adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π)
7165mulid1i 11159 . . . . . . . . . . . . . . . . . 18 (π · 1) = π
7270, 71breqtrrdi 5147 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π · 1))
73 1re 11155 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈ ℝ)
7523a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℝ)
7667a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 < π)
77 ltdivmul 12030 . . . . . . . . . . . . . . . . . 18 (((ℑ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7863, 74, 75, 76, 77syl112anc 1374 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7972, 78mpbird 256 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < 1)
80 1e0p1 12660 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
8179, 80breqtrdi 5146 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < (0 + 1))
8263recoscld 16026 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℝ)
8363resincld 16025 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℝ)
8482, 83crimd 15117 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥)))
85 efeul 16044 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8685ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8786oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))))
8882recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℂ)
89 ax-icn 11110 . . . . . . . . . . . . . . . . . . . . . . . 24 i ∈ ℂ
9083recnd 11183 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℂ)
91 mulcl 11135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((i ∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9289, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9388, 92addcld 11174 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℂ)
94 recl 14995 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
9594ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℝ)
9695recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℂ)
97 efcl 15965 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℂ)
99 efne0 15979 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ≠ 0)
10193, 98, 100divcan3d 11936 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
10287, 101eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
103 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
10495reefcld 15970 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℝ)
105103, 104, 100redivcld 11983 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) ∈ ℝ)
106102, 105eqeltrrd 2839 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℝ)
107106reim0d 15110 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = 0)
10884, 107eqtr3d 2778 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) = 0)
109 sineq0 25880 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝑥) ∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
11064, 109syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
111108, 110mpbid 231 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℤ)
112 0z 12510 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
113 zleltp1 12554 . . . . . . . . . . . . . . . 16 ((((ℑ‘𝑥) / π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
114111, 112, 113sylancl 586 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
11581, 114mpbird 256 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ≤ 0)
116 df-neg 11388 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
11765mulm1i 11600 . . . . . . . . . . . . . . . . . 18 (-1 · π) = -π
11850adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π < (ℑ‘𝑥))
119117, 118eqbrtrid 5140 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π) < (ℑ‘𝑥))
12073renegcli 11462 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈ ℝ)
122 ltmuldiv 12028 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
123121, 63, 75, 76, 122syl112anc 1374 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
124119, 123mpbid 231 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 < ((ℑ‘𝑥) / π))
125116, 124eqbrtrrid 5141 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) < ((ℑ‘𝑥) / π))
126 zlem1lt 12555 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
127112, 111, 126sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
128125, 127mpbird 256 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤ ((ℑ‘𝑥) / π))
12963, 75, 69redivcld 11983 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℝ)
130 0re 11157 . . . . . . . . . . . . . . 15 0 ∈ ℝ
131 letri3 11240 . . . . . . . . . . . . . . 15 ((((ℑ‘𝑥) / π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
132129, 130, 131sylancl 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
133115, 128, 132mpbir2and 711 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) = 0)
13464, 66, 69, 133diveq0d 11938 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0)
135 reim0b 15004 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
136135ad2antrr 724 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
137134, 136mpbird 256 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)
138137rpefcld 15987 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ+)
139138ex 413 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+))
1404ellogdm 25994 . . . . . . . . 9 ((exp‘𝑥) ∈ 𝐷 ↔ ((exp‘𝑥) ∈ ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+)))
14162, 139, 140sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
142 funfvima2 7181 . . . . . . . . 9 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
1439, 13, 142mp2an 690 . . . . . . . 8 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
144141, 143syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
14560, 144eqeltrrd 2839 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
14646, 145sylbi 216 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
147146ssriv 3948 . . . 4 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
14844, 147eqssi 3960 . . 3 (log “ 𝐷) = (ℑ “ (-π(,)π))
149 f1oeq3 6774 . . 3 ((log “ 𝐷) = (ℑ “ (-π(,)π)) → ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))))
150148, 149ax-mp 5 . 2 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π)))
1517, 150mpbi 229 1 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cz 12499  +crp 12915  (,)cioo 13264  (,]cioc 13265  cre 14982  cim 14983  expce 15944  sincsin 15946  cosccos 15947  πcpi 15949  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  efopnlem2  26012
  Copyright terms: Public domain W3C validator