MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logf1o2 Structured version   Visualization version   GIF version

Theorem logf1o2 25814
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
logf1o2 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))

Proof of Theorem logf1o2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 25729 . . . 4 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1of1 6724 . . . 4 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})–1-1→ran log)
31, 2ax-mp 5 . . 3 log:(ℂ ∖ {0})–1-1→ran log
4 logcn.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
54logdmss 25806 . . 3 𝐷 ⊆ (ℂ ∖ {0})
6 f1ores 6739 . . 3 ((log:(ℂ ∖ {0})–1-1→ran log ∧ 𝐷 ⊆ (ℂ ∖ {0})) → (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷))
73, 5, 6mp2an 689 . 2 (log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷)
8 f1ofun 6727 . . . . . . 7 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
91, 8ax-mp 5 . . . . . 6 Fun log
10 f1of 6725 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
111, 10ax-mp 5 . . . . . . . 8 log:(ℂ ∖ {0})⟶ran log
1211fdmi 6621 . . . . . . 7 dom log = (ℂ ∖ {0})
135, 12sseqtrri 3959 . . . . . 6 𝐷 ⊆ dom log
14 funimass4 6843 . . . . . 6 ((Fun log ∧ 𝐷 ⊆ dom log) → ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π))))
159, 13, 14mp2an 689 . . . . 5 ((log “ 𝐷) ⊆ (ℑ “ (-π(,)π)) ↔ ∀𝑥𝐷 (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
164ellogdm 25803 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
1716simplbi 498 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
184logdmn0 25804 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
1917, 18logcld 25735 . . . . . 6 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
2019imcld 14915 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ)
2117, 18logimcld 25736 . . . . . . . 8 (𝑥𝐷 → (-π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) ≤ π))
2221simpld 495 . . . . . . 7 (𝑥𝐷 → -π < (ℑ‘(log‘𝑥)))
23 pire 25624 . . . . . . . . 9 π ∈ ℝ
2423a1i 11 . . . . . . . 8 (𝑥𝐷 → π ∈ ℝ)
2521simprd 496 . . . . . . . 8 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≤ π)
264logdmnrp 25805 . . . . . . . . . 10 (𝑥𝐷 → ¬ -𝑥 ∈ ℝ+)
27 lognegb 25754 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2817, 18, 27syl2anc 584 . . . . . . . . . . 11 (𝑥𝐷 → (-𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) = π))
2928necon3bbid 2982 . . . . . . . . . 10 (𝑥𝐷 → (¬ -𝑥 ∈ ℝ+ ↔ (ℑ‘(log‘𝑥)) ≠ π))
3026, 29mpbid 231 . . . . . . . . 9 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ≠ π)
3130necomd 3000 . . . . . . . 8 (𝑥𝐷 → π ≠ (ℑ‘(log‘𝑥)))
3220, 24, 25, 31leneltd 11138 . . . . . . 7 (𝑥𝐷 → (ℑ‘(log‘𝑥)) < π)
3323renegcli 11291 . . . . . . . . 9 -π ∈ ℝ
3433rexri 11042 . . . . . . . 8 -π ∈ ℝ*
3523rexri 11042 . . . . . . . 8 π ∈ ℝ*
36 elioo2 13129 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π)))
3734, 35, 36mp2an 689 . . . . . . 7 ((ℑ‘(log‘𝑥)) ∈ (-π(,)π) ↔ ((ℑ‘(log‘𝑥)) ∈ ℝ ∧ -π < (ℑ‘(log‘𝑥)) ∧ (ℑ‘(log‘𝑥)) < π))
3820, 22, 32, 37syl3anbrc 1342 . . . . . 6 (𝑥𝐷 → (ℑ‘(log‘𝑥)) ∈ (-π(,)π))
39 imf 14833 . . . . . . 7 ℑ:ℂ⟶ℝ
40 ffn 6609 . . . . . . 7 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
41 elpreima 6944 . . . . . . 7 (ℑ Fn ℂ → ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π))))
4239, 40, 41mp2b 10 . . . . . 6 ((log‘𝑥) ∈ (ℑ “ (-π(,)π)) ↔ ((log‘𝑥) ∈ ℂ ∧ (ℑ‘(log‘𝑥)) ∈ (-π(,)π)))
4319, 38, 42sylanbrc 583 . . . . 5 (𝑥𝐷 → (log‘𝑥) ∈ (ℑ “ (-π(,)π)))
4415, 43mprgbir 3080 . . . 4 (log “ 𝐷) ⊆ (ℑ “ (-π(,)π))
45 elpreima 6944 . . . . . . 7 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4639, 40, 45mp2b 10 . . . . . 6 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
47 simpl 483 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
48 eliooord 13147 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4948adantl 482 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
5049simpld 495 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → -π < (ℑ‘𝑥))
5149simprd 496 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) < π)
52 imcl 14831 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (ℑ‘𝑥) ∈ ℝ)
5352adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ∈ ℝ)
54 ltle 11072 . . . . . . . . . . 11 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5553, 23, 54sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((ℑ‘𝑥) < π → (ℑ‘𝑥) ≤ π))
5651, 55mpd 15 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (ℑ‘𝑥) ≤ π)
57 ellogrn 25724 . . . . . . . . 9 (𝑥 ∈ ran log ↔ (𝑥 ∈ ℂ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) ≤ π))
5847, 50, 56, 57syl3anbrc 1342 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ ran log)
59 logef 25746 . . . . . . . 8 (𝑥 ∈ ran log → (log‘(exp‘𝑥)) = 𝑥)
6058, 59syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) = 𝑥)
61 efcl 15801 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6261adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ ℂ)
6353adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℝ)
6463recnd 11012 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) ∈ ℂ)
65 picn 25625 . . . . . . . . . . . . . 14 π ∈ ℂ
6665a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℂ)
67 pipos 25626 . . . . . . . . . . . . . . 15 0 < π
6823, 67gt0ne0ii 11520 . . . . . . . . . . . . . 14 π ≠ 0
6968a1i 11 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ≠ 0)
7051adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < π)
7165mulid1i 10988 . . . . . . . . . . . . . . . . . 18 (π · 1) = π
7270, 71breqtrrdi 5117 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) < (π · 1))
73 1re 10984 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
7473a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 1 ∈ ℝ)
7523a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → π ∈ ℝ)
7667a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 < π)
77 ltdivmul 11859 . . . . . . . . . . . . . . . . . 18 (((ℑ‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7863, 74, 75, 76, 77syl112anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) < 1 ↔ (ℑ‘𝑥) < (π · 1)))
7972, 78mpbird 256 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < 1)
80 1e0p1 12488 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
8179, 80breqtrdi 5116 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) < (0 + 1))
8263recoscld 15862 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℝ)
8363resincld 15861 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℝ)
8482, 83crimd 14952 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = (sin‘(ℑ‘𝑥)))
85 efeul 15880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8685ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) = ((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))))
8786oveq1d 7299 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))))
8882recnd 11012 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (cos‘(ℑ‘𝑥)) ∈ ℂ)
89 ax-icn 10939 . . . . . . . . . . . . . . . . . . . . . . . 24 i ∈ ℂ
9083recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) ∈ ℂ)
91 mulcl 10964 . . . . . . . . . . . . . . . . . . . . . . . 24 ((i ∈ ℂ ∧ (sin‘(ℑ‘𝑥)) ∈ ℂ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9289, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (i · (sin‘(ℑ‘𝑥))) ∈ ℂ)
9388, 92addcld 11003 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℂ)
94 recl 14830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
9594ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℝ)
9695recnd 11012 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℜ‘𝑥) ∈ ℂ)
97 efcl 15801 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ∈ ℂ)
9896, 97syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℂ)
99 efne0 15815 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℜ‘𝑥) ∈ ℂ → (exp‘(ℜ‘𝑥)) ≠ 0)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ≠ 0)
10193, 98, 100divcan3d 11765 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((exp‘(ℜ‘𝑥)) · ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
10287, 101eqtrd 2779 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) = ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))))
103 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
10495reefcld 15806 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘(ℜ‘𝑥)) ∈ ℝ)
105103, 104, 100redivcld 11812 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((exp‘𝑥) / (exp‘(ℜ‘𝑥))) ∈ ℝ)
106102, 105eqeltrrd 2841 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥)))) ∈ ℝ)
107106reim0d 14945 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘((cos‘(ℑ‘𝑥)) + (i · (sin‘(ℑ‘𝑥))))) = 0)
10884, 107eqtr3d 2781 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (sin‘(ℑ‘𝑥)) = 0)
109 sineq0 25689 . . . . . . . . . . . . . . . . . 18 ((ℑ‘𝑥) ∈ ℂ → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
11064, 109syl 17 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((sin‘(ℑ‘𝑥)) = 0 ↔ ((ℑ‘𝑥) / π) ∈ ℤ))
111108, 110mpbid 231 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℤ)
112 0z 12339 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
113 zleltp1 12380 . . . . . . . . . . . . . . . 16 ((((ℑ‘𝑥) / π) ∈ ℤ ∧ 0 ∈ ℤ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
114111, 112, 113sylancl 586 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) ≤ 0 ↔ ((ℑ‘𝑥) / π) < (0 + 1)))
11581, 114mpbird 256 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ≤ 0)
116 df-neg 11217 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
11765mulm1i 11429 . . . . . . . . . . . . . . . . . 18 (-1 · π) = -π
11850adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -π < (ℑ‘𝑥))
119117, 118eqbrtrid 5110 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (-1 · π) < (ℑ‘𝑥))
12073renegcli 11291 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 ∈ ℝ)
122 ltmuldiv 11857 . . . . . . . . . . . . . . . . . 18 ((-1 ∈ ℝ ∧ (ℑ‘𝑥) ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
123121, 63, 75, 76, 122syl112anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((-1 · π) < (ℑ‘𝑥) ↔ -1 < ((ℑ‘𝑥) / π)))
124119, 123mpbid 231 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → -1 < ((ℑ‘𝑥) / π))
125116, 124eqbrtrrid 5111 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 − 1) < ((ℑ‘𝑥) / π))
126 zlem1lt 12381 . . . . . . . . . . . . . . . 16 ((0 ∈ ℤ ∧ ((ℑ‘𝑥) / π) ∈ ℤ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
127112, 111, 126sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (0 ≤ ((ℑ‘𝑥) / π) ↔ (0 − 1) < ((ℑ‘𝑥) / π)))
128125, 127mpbird 256 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 0 ≤ ((ℑ‘𝑥) / π))
12963, 75, 69redivcld 11812 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) ∈ ℝ)
130 0re 10986 . . . . . . . . . . . . . . 15 0 ∈ ℝ
131 letri3 11069 . . . . . . . . . . . . . . 15 ((((ℑ‘𝑥) / π) ∈ ℝ ∧ 0 ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
132129, 130, 131sylancl 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (((ℑ‘𝑥) / π) = 0 ↔ (((ℑ‘𝑥) / π) ≤ 0 ∧ 0 ≤ ((ℑ‘𝑥) / π))))
133115, 128, 132mpbir2and 710 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → ((ℑ‘𝑥) / π) = 0)
13464, 66, 69, 133diveq0d 11767 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (ℑ‘𝑥) = 0)
135 reim0b 14839 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
136135ad2antrr 723 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (𝑥 ∈ ℝ ↔ (ℑ‘𝑥) = 0))
137134, 136mpbird 256 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → 𝑥 ∈ ℝ)
138137rpefcld 15823 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) ∧ (exp‘𝑥) ∈ ℝ) → (exp‘𝑥) ∈ ℝ+)
139138ex 413 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+))
1404ellogdm 25803 . . . . . . . . 9 ((exp‘𝑥) ∈ 𝐷 ↔ ((exp‘𝑥) ∈ ℂ ∧ ((exp‘𝑥) ∈ ℝ → (exp‘𝑥) ∈ ℝ+)))
14162, 139, 140sylanbrc 583 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (exp‘𝑥) ∈ 𝐷)
142 funfvima2 7116 . . . . . . . . 9 ((Fun log ∧ 𝐷 ⊆ dom log) → ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷)))
1439, 13, 142mp2an 689 . . . . . . . 8 ((exp‘𝑥) ∈ 𝐷 → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
144141, 143syl 17 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → (log‘(exp‘𝑥)) ∈ (log “ 𝐷))
14560, 144eqeltrrd 2841 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
14646, 145sylbi 216 . . . . 5 (𝑥 ∈ (ℑ “ (-π(,)π)) → 𝑥 ∈ (log “ 𝐷))
147146ssriv 3926 . . . 4 (ℑ “ (-π(,)π)) ⊆ (log “ 𝐷)
14844, 147eqssi 3938 . . 3 (log “ 𝐷) = (ℑ “ (-π(,)π))
149 f1oeq3 6715 . . 3 ((log “ 𝐷) = (ℑ “ (-π(,)π)) → ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))))
150148, 149ax-mp 5 . 2 ((log ↾ 𝐷):𝐷1-1-onto→(log “ 𝐷) ↔ (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π)))
1517, 150mpbi 229 1 (log ↾ 𝐷):𝐷1-1-onto→(ℑ “ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  cdif 3885  wss 3888  {csn 4562   class class class wbr 5075  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Fun wfun 6431   Fn wfn 6432  wf 6433  1-1wf1 6434  1-1-ontowf1o 6436  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cz 12328  +crp 12739  (,)cioo 13088  (,]cioc 13089  cre 14817  cim 14818  expce 15780  sincsin 15782  cosccos 15783  πcpi 15785  logclog 25719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721
This theorem is referenced by:  efopnlem2  25821
  Copyright terms: Public domain W3C validator