![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacp1lem2b | Structured version Visualization version GIF version |
Description: Lemma for subfacp1 34472. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
subfacp1lem.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
subfacp1lem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
subfacp1lem1.m | ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
subfacp1lem1.x | ⊢ 𝑀 ∈ V |
subfacp1lem1.k | ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
subfacp1lem2.5 | ⊢ 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) |
subfacp1lem2.6 | ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) |
Ref | Expression |
---|---|
subfacp1lem2b | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | . . . . . 6 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
2 | subfac.n | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
3 | subfacp1lem.a | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} | |
4 | subfacp1lem1.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | subfacp1lem1.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) | |
6 | subfacp1lem1.x | . . . . . 6 ⊢ 𝑀 ∈ V | |
7 | subfacp1lem1.k | . . . . . 6 ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) | |
8 | subfacp1lem2.5 | . . . . . 6 ⊢ 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) | |
9 | subfacp1lem2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | subfacp1lem2a 34466 | . . . . 5 ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
11 | 10 | simp1d 1141 | . . . 4 ⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
12 | f1ofun 6836 | . . . 4 ⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → Fun 𝐹) |
15 | ssun1 4173 | . . . 4 ⊢ 𝐺 ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) | |
16 | 15, 8 | sseqtrri 4020 | . . 3 ⊢ 𝐺 ⊆ 𝐹 |
17 | 16 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝐺 ⊆ 𝐹) |
18 | f1odm 6838 | . . . . 5 ⊢ (𝐺:𝐾–1-1-onto→𝐾 → dom 𝐺 = 𝐾) | |
19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 = 𝐾) |
20 | 19 | eleq2d 2818 | . . 3 ⊢ (𝜑 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐾)) |
21 | 20 | biimpar 477 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ dom 𝐺) |
22 | funssfv 6913 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝑋 ∈ dom 𝐺) → (𝐹‘𝑋) = (𝐺‘𝑋)) | |
23 | 14, 17, 21, 22 | syl3anc 1370 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ≠ wne 2939 ∀wral 3060 Vcvv 3473 ∖ cdif 3946 ∪ cun 3947 ⊆ wss 3949 {csn 4629 {cpr 4631 ⟨cop 4635 ↦ cmpt 5232 dom cdm 5677 Fun wfun 6538 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7412 Fincfn 8942 1c1 11114 + caddc 11116 ℕcn 12217 2c2 12272 ℕ0cn0 12477 ...cfz 13489 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 |
This theorem is referenced by: subfacp1lem3 34468 subfacp1lem4 34469 subfacp1lem5 34470 |
Copyright terms: Public domain | W3C validator |