Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2b Structured version   Visualization version   GIF version

Theorem subfacp1lem2b 33666
Description: Lemma for subfacp1 33671. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2b ((𝜑𝑋𝐾) → (𝐹𝑋) = (𝐺𝑋))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)   𝑋(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem subfacp1lem2b
StepHypRef Expression
1 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
7 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem2.5 . . . . . 6 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 subfacp1lem2.6 . . . . . 6 (𝜑𝐺:𝐾1-1-onto𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9subfacp1lem2a 33665 . . . . 5 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1110simp1d 1142 . . . 4 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
12 f1ofun 6784 . . . 4 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
1311, 12syl 17 . . 3 (𝜑 → Fun 𝐹)
1413adantr 481 . 2 ((𝜑𝑋𝐾) → Fun 𝐹)
15 ssun1 4131 . . . 4 𝐺 ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
1615, 8sseqtrri 3980 . . 3 𝐺𝐹
1716a1i 11 . 2 ((𝜑𝑋𝐾) → 𝐺𝐹)
18 f1odm 6786 . . . . 5 (𝐺:𝐾1-1-onto𝐾 → dom 𝐺 = 𝐾)
199, 18syl 17 . . . 4 (𝜑 → dom 𝐺 = 𝐾)
2019eleq2d 2823 . . 3 (𝜑 → (𝑋 ∈ dom 𝐺𝑋𝐾))
2120biimpar 478 . 2 ((𝜑𝑋𝐾) → 𝑋 ∈ dom 𝐺)
22 funssfv 6861 . 2 ((Fun 𝐹𝐺𝐹𝑋 ∈ dom 𝐺) → (𝐹𝑋) = (𝐺𝑋))
2314, 17, 21, 22syl3anc 1371 1 ((𝜑𝑋𝐾) → (𝐹𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2942  wral 3063  Vcvv 3444  cdif 3906  cun 3907  wss 3909  {csn 4585  {cpr 4587  cop 4591  cmpt 5187  dom cdm 5632  Fun wfun 6488  1-1-ontowf1o 6493  cfv 6494  (class class class)co 7354  Fincfn 8880  1c1 11049   + caddc 11051  cn 12150  2c2 12205  0cn0 12410  ...cfz 13421  chash 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-oadd 8413  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-dju 9834  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-n0 12411  df-z 12497  df-uz 12761  df-fz 13422  df-hash 14228
This theorem is referenced by:  subfacp1lem3  33667  subfacp1lem4  33668  subfacp1lem5  33669
  Copyright terms: Public domain W3C validator