| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacp1lem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for subfacp1 35208. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
| subfacp1lem.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| subfacp1lem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| subfacp1lem1.m | ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
| subfacp1lem1.x | ⊢ 𝑀 ∈ V |
| subfacp1lem1.k | ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
| subfacp1lem2.5 | ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
| subfacp1lem2.6 | ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) |
| Ref | Expression |
|---|---|
| subfacp1lem2b | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | derang.d | . . . . . 6 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 2 | subfac.n | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
| 3 | subfacp1lem.a | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} | |
| 4 | subfacp1lem1.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | subfacp1lem1.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) | |
| 6 | subfacp1lem1.x | . . . . . 6 ⊢ 𝑀 ∈ V | |
| 7 | subfacp1lem1.k | . . . . . 6 ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) | |
| 8 | subfacp1lem2.5 | . . . . . 6 ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
| 9 | subfacp1lem2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | subfacp1lem2a 35202 | . . . . 5 ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
| 11 | 10 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 12 | f1ofun 6820 | . . . 4 ⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → Fun 𝐹) |
| 15 | ssun1 4153 | . . . 4 ⊢ 𝐺 ⊆ (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
| 16 | 15, 8 | sseqtrri 4008 | . . 3 ⊢ 𝐺 ⊆ 𝐹 |
| 17 | 16 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝐺 ⊆ 𝐹) |
| 18 | f1odm 6822 | . . . . 5 ⊢ (𝐺:𝐾–1-1-onto→𝐾 → dom 𝐺 = 𝐾) | |
| 19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 = 𝐾) |
| 20 | 19 | eleq2d 2820 | . . 3 ⊢ (𝜑 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐾)) |
| 21 | 20 | biimpar 477 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ dom 𝐺) |
| 22 | funssfv 6897 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝑋 ∈ dom 𝐺) → (𝐹‘𝑋) = (𝐺‘𝑋)) | |
| 23 | 14, 17, 21, 22 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 〈cop 4607 ↦ cmpt 5201 dom cdm 5654 Fun wfun 6525 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 1c1 11130 + caddc 11132 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: subfacp1lem3 35204 subfacp1lem4 35205 subfacp1lem5 35206 |
| Copyright terms: Public domain | W3C validator |