Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacp1lem2b | Structured version Visualization version GIF version |
Description: Lemma for subfacp1 32668. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
subfacp1lem.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
subfacp1lem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
subfacp1lem1.m | ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
subfacp1lem1.x | ⊢ 𝑀 ∈ V |
subfacp1lem1.k | ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
subfacp1lem2.5 | ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
subfacp1lem2.6 | ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) |
Ref | Expression |
---|---|
subfacp1lem2b | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | . . . . . 6 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
2 | subfac.n | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
3 | subfacp1lem.a | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} | |
4 | subfacp1lem1.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | subfacp1lem1.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) | |
6 | subfacp1lem1.x | . . . . . 6 ⊢ 𝑀 ∈ V | |
7 | subfacp1lem1.k | . . . . . 6 ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) | |
8 | subfacp1lem2.5 | . . . . . 6 ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
9 | subfacp1lem2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | subfacp1lem2a 32662 | . . . . 5 ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
11 | 10 | simp1d 1139 | . . . 4 ⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
12 | f1ofun 6608 | . . . 4 ⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
14 | 13 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → Fun 𝐹) |
15 | ssun1 4079 | . . . 4 ⊢ 𝐺 ⊆ (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
16 | 15, 8 | sseqtrri 3931 | . . 3 ⊢ 𝐺 ⊆ 𝐹 |
17 | 16 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝐺 ⊆ 𝐹) |
18 | f1odm 6610 | . . . . 5 ⊢ (𝐺:𝐾–1-1-onto→𝐾 → dom 𝐺 = 𝐾) | |
19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 = 𝐾) |
20 | 19 | eleq2d 2837 | . . 3 ⊢ (𝜑 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐾)) |
21 | 20 | biimpar 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ dom 𝐺) |
22 | funssfv 6683 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝑋 ∈ dom 𝐺) → (𝐹‘𝑋) = (𝐺‘𝑋)) | |
23 | 14, 17, 21, 22 | syl3anc 1368 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ≠ wne 2951 ∀wral 3070 Vcvv 3409 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 {csn 4525 {cpr 4527 〈cop 4531 ↦ cmpt 5115 dom cdm 5527 Fun wfun 6333 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7155 Fincfn 8532 1c1 10581 + caddc 10583 ℕcn 11679 2c2 11734 ℕ0cn0 11939 ...cfz 12944 ♯chash 13745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-oadd 8121 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-dju 9368 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-hash 13746 |
This theorem is referenced by: subfacp1lem3 32664 subfacp1lem4 32665 subfacp1lem5 32666 |
Copyright terms: Public domain | W3C validator |