Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2b Structured version   Visualization version   GIF version

Theorem subfacp1lem2b 32423
Description: Lemma for subfacp1 32428. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2b ((𝜑𝑋𝐾) → (𝐹𝑋) = (𝐺𝑋))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)   𝑋(𝑥,𝑦,𝑓,𝑛)

Proof of Theorem subfacp1lem2b
StepHypRef Expression
1 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
7 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem2.5 . . . . . 6 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 subfacp1lem2.6 . . . . . 6 (𝜑𝐺:𝐾1-1-onto𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9subfacp1lem2a 32422 . . . . 5 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1110simp1d 1138 . . . 4 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
12 f1ofun 6611 . . . 4 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
1311, 12syl 17 . . 3 (𝜑 → Fun 𝐹)
1413adantr 483 . 2 ((𝜑𝑋𝐾) → Fun 𝐹)
15 ssun1 4147 . . . 4 𝐺 ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
1615, 8sseqtrri 4003 . . 3 𝐺𝐹
1716a1i 11 . 2 ((𝜑𝑋𝐾) → 𝐺𝐹)
18 f1odm 6613 . . . . 5 (𝐺:𝐾1-1-onto𝐾 → dom 𝐺 = 𝐾)
199, 18syl 17 . . . 4 (𝜑 → dom 𝐺 = 𝐾)
2019eleq2d 2898 . . 3 (𝜑 → (𝑋 ∈ dom 𝐺𝑋𝐾))
2120biimpar 480 . 2 ((𝜑𝑋𝐾) → 𝑋 ∈ dom 𝐺)
22 funssfv 6685 . 2 ((Fun 𝐹𝐺𝐹𝑋 ∈ dom 𝐺) → (𝐹𝑋) = (𝐺𝑋))
2314, 17, 21, 22syl3anc 1367 1 ((𝜑𝑋𝐾) → (𝐹𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  Vcvv 3494  cdif 3932  cun 3933  wss 3935  {csn 4560  {cpr 4562  cop 4566  cmpt 5138  dom cdm 5549  Fun wfun 6343  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Fincfn 8503  1c1 10532   + caddc 10534  cn 11632  2c2 11686  0cn0 11891  ...cfz 12886  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  subfacp1lem3  32424  subfacp1lem4  32425  subfacp1lem5  32426
  Copyright terms: Public domain W3C validator