| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacp1lem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for subfacp1 35173. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
| subfacp1lem.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| subfacp1lem1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| subfacp1lem1.m | ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
| subfacp1lem1.x | ⊢ 𝑀 ∈ V |
| subfacp1lem1.k | ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
| subfacp1lem2.5 | ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
| subfacp1lem2.6 | ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) |
| Ref | Expression |
|---|---|
| subfacp1lem2b | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | derang.d | . . . . . 6 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 2 | subfac.n | . . . . . 6 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
| 3 | subfacp1lem.a | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} | |
| 4 | subfacp1lem1.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | subfacp1lem1.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) | |
| 6 | subfacp1lem1.x | . . . . . 6 ⊢ 𝑀 ∈ V | |
| 7 | subfacp1lem1.k | . . . . . 6 ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) | |
| 8 | subfacp1lem2.5 | . . . . . 6 ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
| 9 | subfacp1lem2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | subfacp1lem2a 35167 | . . . . 5 ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
| 11 | 10 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 12 | f1ofun 6802 | . . . 4 ⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → Fun 𝐹) |
| 15 | ssun1 4141 | . . . 4 ⊢ 𝐺 ⊆ (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) | |
| 16 | 15, 8 | sseqtrri 3996 | . . 3 ⊢ 𝐺 ⊆ 𝐹 |
| 17 | 16 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝐺 ⊆ 𝐹) |
| 18 | f1odm 6804 | . . . . 5 ⊢ (𝐺:𝐾–1-1-onto→𝐾 → dom 𝐺 = 𝐾) | |
| 19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 = 𝐾) |
| 20 | 19 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑋 ∈ dom 𝐺 ↔ 𝑋 ∈ 𝐾)) |
| 21 | 20 | biimpar 477 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ dom 𝐺) |
| 22 | funssfv 6879 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝑋 ∈ dom 𝐺) → (𝐹‘𝑋) = (𝐺‘𝑋)) | |
| 23 | 14, 17, 21, 22 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 〈cop 4595 ↦ cmpt 5188 dom cdm 5638 Fun wfun 6505 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 1c1 11069 + caddc 11071 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: subfacp1lem3 35169 subfacp1lem4 35170 subfacp1lem5 35171 |
| Copyright terms: Public domain | W3C validator |