Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢ (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)) = (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)) |
2 | | fcobij.1 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
3 | | f1of 6716 |
. . . . . 6
⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → 𝐺:𝑆⟶𝑇) |
6 | | fcobij.3 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
7 | | fcobij.2 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑈) |
8 | 6, 7 | elmapd 8629 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↔ 𝑓:𝑅⟶𝑆)) |
9 | 8 | biimpa 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → 𝑓:𝑅⟶𝑆) |
10 | | fco 6624 |
. . . 4
⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
11 | 5, 9, 10 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
12 | | fcobij.4 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ 𝑊) |
13 | 12, 7 | elmapd 8629 |
. . . 4
⊢ (𝜑 → ((𝐺 ∘ 𝑓) ∈ (𝑇 ↑m 𝑅) ↔ (𝐺 ∘ 𝑓):𝑅⟶𝑇)) |
14 | 13 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → ((𝐺 ∘ 𝑓) ∈ (𝑇 ↑m 𝑅) ↔ (𝐺 ∘ 𝑓):𝑅⟶𝑇)) |
15 | 11, 14 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓) ∈ (𝑇 ↑m 𝑅)) |
16 | | f1ocnv 6728 |
. . . . . 6
⊢ (𝐺:𝑆–1-1-onto→𝑇 → ◡𝐺:𝑇–1-1-onto→𝑆) |
17 | | f1of 6716 |
. . . . . 6
⊢ (◡𝐺:𝑇–1-1-onto→𝑆 → ◡𝐺:𝑇⟶𝑆) |
18 | 2, 16, 17 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝐺:𝑇⟶𝑆) |
19 | 18 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ (𝑇 ↑m 𝑅)) → ◡𝐺:𝑇⟶𝑆) |
20 | 12, 7 | elmapd 8629 |
. . . . 5
⊢ (𝜑 → (ℎ ∈ (𝑇 ↑m 𝑅) ↔ ℎ:𝑅⟶𝑇)) |
21 | 20 | biimpa 477 |
. . . 4
⊢ ((𝜑 ∧ ℎ ∈ (𝑇 ↑m 𝑅)) → ℎ:𝑅⟶𝑇) |
22 | | fco 6624 |
. . . 4
⊢ ((◡𝐺:𝑇⟶𝑆 ∧ ℎ:𝑅⟶𝑇) → (◡𝐺 ∘ ℎ):𝑅⟶𝑆) |
23 | 19, 21, 22 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ (𝑇 ↑m 𝑅)) → (◡𝐺 ∘ ℎ):𝑅⟶𝑆) |
24 | 6, 7 | elmapd 8629 |
. . . 4
⊢ (𝜑 → ((◡𝐺 ∘ ℎ) ∈ (𝑆 ↑m 𝑅) ↔ (◡𝐺 ∘ ℎ):𝑅⟶𝑆)) |
25 | 24 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ (𝑇 ↑m 𝑅)) → ((◡𝐺 ∘ ℎ) ∈ (𝑆 ↑m 𝑅) ↔ (◡𝐺 ∘ ℎ):𝑅⟶𝑆)) |
26 | 23, 25 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ ℎ ∈ (𝑇 ↑m 𝑅)) → (◡𝐺 ∘ ℎ) ∈ (𝑆 ↑m 𝑅)) |
27 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → 𝑓 = (◡𝐺 ∘ ℎ)) |
28 | 27 | coeq2d 5771 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → (𝐺 ∘ 𝑓) = (𝐺 ∘ (◡𝐺 ∘ ℎ))) |
29 | | coass 6169 |
. . . . 5
⊢ ((𝐺 ∘ ◡𝐺) ∘ ℎ) = (𝐺 ∘ (◡𝐺 ∘ ℎ)) |
30 | 28, 29 | eqtr4di 2796 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → (𝐺 ∘ 𝑓) = ((𝐺 ∘ ◡𝐺) ∘ ℎ)) |
31 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → 𝜑) |
32 | | f1ococnv2 6743 |
. . . . . 6
⊢ (𝐺:𝑆–1-1-onto→𝑇 → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝑇)) |
33 | 31, 2, 32 | 3syl 18 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝑇)) |
34 | 33 | coeq1d 5770 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → ((𝐺 ∘ ◡𝐺) ∘ ℎ) = (( I ↾ 𝑇) ∘ ℎ)) |
35 | | simplrr 775 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → ℎ ∈ (𝑇 ↑m 𝑅)) |
36 | 31, 35, 21 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → ℎ:𝑅⟶𝑇) |
37 | | fcoi2 6649 |
. . . . 5
⊢ (ℎ:𝑅⟶𝑇 → (( I ↾ 𝑇) ∘ ℎ) = ℎ) |
38 | 36, 37 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → (( I ↾ 𝑇) ∘ ℎ) = ℎ) |
39 | 30, 34, 38 | 3eqtrrd 2783 |
. . 3
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ 𝑓 = (◡𝐺 ∘ ℎ)) → ℎ = (𝐺 ∘ 𝑓)) |
40 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → ℎ = (𝐺 ∘ 𝑓)) |
41 | 40 | coeq2d 5771 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → (◡𝐺 ∘ ℎ) = (◡𝐺 ∘ (𝐺 ∘ 𝑓))) |
42 | | coass 6169 |
. . . . 5
⊢ ((◡𝐺 ∘ 𝐺) ∘ 𝑓) = (◡𝐺 ∘ (𝐺 ∘ 𝑓)) |
43 | 41, 42 | eqtr4di 2796 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → (◡𝐺 ∘ ℎ) = ((◡𝐺 ∘ 𝐺) ∘ 𝑓)) |
44 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → 𝜑) |
45 | | f1ococnv1 6745 |
. . . . . 6
⊢ (𝐺:𝑆–1-1-onto→𝑇 → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝑆)) |
46 | 44, 2, 45 | 3syl 18 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝑆)) |
47 | 46 | coeq1d 5770 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → ((◡𝐺 ∘ 𝐺) ∘ 𝑓) = (( I ↾ 𝑆) ∘ 𝑓)) |
48 | | simplrl 774 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → 𝑓 ∈ (𝑆 ↑m 𝑅)) |
49 | 44, 48, 9 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → 𝑓:𝑅⟶𝑆) |
50 | | fcoi2 6649 |
. . . . 5
⊢ (𝑓:𝑅⟶𝑆 → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓) |
51 | 49, 50 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓) |
52 | 43, 47, 51 | 3eqtrrd 2783 |
. . 3
⊢ (((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) ∧ ℎ = (𝐺 ∘ 𝑓)) → 𝑓 = (◡𝐺 ∘ ℎ)) |
53 | 39, 52 | impbida 798 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ (𝑆 ↑m 𝑅) ∧ ℎ ∈ (𝑇 ↑m 𝑅))) → (𝑓 = (◡𝐺 ∘ ℎ) ↔ ℎ = (𝐺 ∘ 𝑓))) |
54 | 1, 15, 26, 53 | f1o2d 7523 |
1
⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-onto→(𝑇 ↑m 𝑅)) |