Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcobij Structured version   Visualization version   GIF version

Theorem fcobij 30581
 Description: Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.)
Hypotheses
Ref Expression
fcobij.1 (𝜑𝐺:𝑆1-1-onto𝑇)
fcobij.2 (𝜑𝑅𝑈)
fcobij.3 (𝜑𝑆𝑉)
fcobij.4 (𝜑𝑇𝑊)
Assertion
Ref Expression
fcobij (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)):(𝑆m 𝑅)–1-1-onto→(𝑇m 𝑅))
Distinct variable groups:   𝑓,𝐺   𝑅,𝑓   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem fcobij
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)) = (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓))
2 fcobij.1 . . . . . 6 (𝜑𝐺:𝑆1-1-onto𝑇)
3 f1of 6602 . . . . . 6 (𝐺:𝑆1-1-onto𝑇𝐺:𝑆𝑇)
42, 3syl 17 . . . . 5 (𝜑𝐺:𝑆𝑇)
54adantr 484 . . . 4 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → 𝐺:𝑆𝑇)
6 fcobij.3 . . . . . 6 (𝜑𝑆𝑉)
7 fcobij.2 . . . . . 6 (𝜑𝑅𝑈)
86, 7elmapd 8430 . . . . 5 (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↔ 𝑓:𝑅𝑆))
98biimpa 480 . . . 4 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → 𝑓:𝑅𝑆)
10 fco 6516 . . . 4 ((𝐺:𝑆𝑇𝑓:𝑅𝑆) → (𝐺𝑓):𝑅𝑇)
115, 9, 10syl2anc 587 . . 3 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺𝑓):𝑅𝑇)
12 fcobij.4 . . . . 5 (𝜑𝑇𝑊)
1312, 7elmapd 8430 . . . 4 (𝜑 → ((𝐺𝑓) ∈ (𝑇m 𝑅) ↔ (𝐺𝑓):𝑅𝑇))
1413adantr 484 . . 3 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → ((𝐺𝑓) ∈ (𝑇m 𝑅) ↔ (𝐺𝑓):𝑅𝑇))
1511, 14mpbird 260 . 2 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺𝑓) ∈ (𝑇m 𝑅))
16 f1ocnv 6614 . . . . . 6 (𝐺:𝑆1-1-onto𝑇𝐺:𝑇1-1-onto𝑆)
17 f1of 6602 . . . . . 6 (𝐺:𝑇1-1-onto𝑆𝐺:𝑇𝑆)
182, 16, 173syl 18 . . . . 5 (𝜑𝐺:𝑇𝑆)
1918adantr 484 . . . 4 ((𝜑 ∈ (𝑇m 𝑅)) → 𝐺:𝑇𝑆)
2012, 7elmapd 8430 . . . . 5 (𝜑 → ( ∈ (𝑇m 𝑅) ↔ :𝑅𝑇))
2120biimpa 480 . . . 4 ((𝜑 ∈ (𝑇m 𝑅)) → :𝑅𝑇)
22 fco 6516 . . . 4 ((𝐺:𝑇𝑆:𝑅𝑇) → (𝐺):𝑅𝑆)
2319, 21, 22syl2anc 587 . . 3 ((𝜑 ∈ (𝑇m 𝑅)) → (𝐺):𝑅𝑆)
246, 7elmapd 8430 . . . 4 (𝜑 → ((𝐺) ∈ (𝑆m 𝑅) ↔ (𝐺):𝑅𝑆))
2524adantr 484 . . 3 ((𝜑 ∈ (𝑇m 𝑅)) → ((𝐺) ∈ (𝑆m 𝑅) ↔ (𝐺):𝑅𝑆))
2623, 25mpbird 260 . 2 ((𝜑 ∈ (𝑇m 𝑅)) → (𝐺) ∈ (𝑆m 𝑅))
27 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → 𝑓 = (𝐺))
2827coeq2d 5702 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝑓) = (𝐺 ∘ (𝐺)))
29 coass 6095 . . . . 5 ((𝐺𝐺) ∘ ) = (𝐺 ∘ (𝐺))
3028, 29eqtr4di 2811 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝑓) = ((𝐺𝐺) ∘ ))
31 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → 𝜑)
32 f1ococnv2 6628 . . . . . 6 (𝐺:𝑆1-1-onto𝑇 → (𝐺𝐺) = ( I ↾ 𝑇))
3331, 2, 323syl 18 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝐺) = ( I ↾ 𝑇))
3433coeq1d 5701 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → ((𝐺𝐺) ∘ ) = (( I ↾ 𝑇) ∘ ))
35 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → ∈ (𝑇m 𝑅))
3631, 35, 21syl2anc 587 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → :𝑅𝑇)
37 fcoi2 6538 . . . . 5 (:𝑅𝑇 → (( I ↾ 𝑇) ∘ ) = )
3836, 37syl 17 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (( I ↾ 𝑇) ∘ ) = )
3930, 34, 383eqtrrd 2798 . . 3 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → = (𝐺𝑓))
40 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → = (𝐺𝑓))
4140coeq2d 5702 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺) = (𝐺 ∘ (𝐺𝑓)))
42 coass 6095 . . . . 5 ((𝐺𝐺) ∘ 𝑓) = (𝐺 ∘ (𝐺𝑓))
4341, 42eqtr4di 2811 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺) = ((𝐺𝐺) ∘ 𝑓))
44 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝜑)
45 f1ococnv1 6630 . . . . . 6 (𝐺:𝑆1-1-onto𝑇 → (𝐺𝐺) = ( I ↾ 𝑆))
4644, 2, 453syl 18 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺𝐺) = ( I ↾ 𝑆))
4746coeq1d 5701 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → ((𝐺𝐺) ∘ 𝑓) = (( I ↾ 𝑆) ∘ 𝑓))
48 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓 ∈ (𝑆m 𝑅))
4944, 48, 9syl2anc 587 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓:𝑅𝑆)
50 fcoi2 6538 . . . . 5 (𝑓:𝑅𝑆 → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓)
5149, 50syl 17 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓)
5243, 47, 513eqtrrd 2798 . . 3 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓 = (𝐺))
5339, 52impbida 800 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) → (𝑓 = (𝐺) ↔ = (𝐺𝑓)))
541, 15, 26, 53f1o2d 7395 1 (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)):(𝑆m 𝑅)–1-1-onto→(𝑇m 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5112   I cid 5429  ◡ccnv 5523   ↾ cres 5526   ∘ ccom 5528  ⟶wf 6331  –1-1-onto→wf1o 6334  (class class class)co 7150   ↑m cmap 8416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator