![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10484. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem1 | ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuc 7847 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | suceq 6461 | . . 3 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
3 | fin1a2lem.a | . . . 4 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
4 | suceq 6461 | . . . . 5 ⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | |
5 | 4 | cbvmptv 5279 | . . . 4 ⊢ (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎) |
6 | 3, 5 | eqtri 2768 | . . 3 ⊢ 𝑆 = (𝑎 ∈ On ↦ suc 𝑎) |
7 | 2, 6 | fvmptg 7027 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆‘𝐴) = suc 𝐴) |
8 | 1, 7 | mpdan 686 | 1 ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 Oncon0 6395 suc csuc 6397 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fin1a2lem2 10470 fin1a2lem6 10474 onsucf1o 43234 |
Copyright terms: Public domain | W3C validator |