| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10368. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| fin1a2lem1 | ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7787 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | suceq 6400 | . . 3 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
| 3 | fin1a2lem.a | . . . 4 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 4 | suceq 6400 | . . . . 5 ⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | |
| 5 | 4 | cbvmptv 5211 | . . . 4 ⊢ (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑎 ∈ On ↦ suc 𝑎) |
| 7 | 2, 6 | fvmptg 6966 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆‘𝐴) = suc 𝐴) |
| 8 | 1, 7 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 Oncon0 6332 suc csuc 6334 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fin1a2lem2 10354 fin1a2lem6 10358 onsucf1o 43261 |
| Copyright terms: Public domain | W3C validator |