MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem1 Structured version   Visualization version   GIF version

Theorem fin1a2lem1 10156
Description: Lemma for fin1a2 10171. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)

Proof of Theorem fin1a2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suceloni 7659 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 suceq 6331 . . 3 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
3 fin1a2lem.a . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4 suceq 6331 . . . . 5 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
54cbvmptv 5187 . . . 4 (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎)
63, 5eqtri 2766 . . 3 𝑆 = (𝑎 ∈ On ↦ suc 𝑎)
72, 6fvmptg 6873 . 2 ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆𝐴) = suc 𝐴)
81, 7mpdan 684 1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cmpt 5157  Oncon0 6266  suc csuc 6268  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  fin1a2lem2  10157  fin1a2lem6  10161
  Copyright terms: Public domain W3C validator