![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9634. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem1 | ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceloni 7343 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | suceq 6092 | . . 3 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
3 | fin1a2lem.a | . . . 4 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
4 | suceq 6092 | . . . . 5 ⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | |
5 | 4 | cbvmptv 5025 | . . . 4 ⊢ (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎) |
6 | 3, 5 | eqtri 2797 | . . 3 ⊢ 𝑆 = (𝑎 ∈ On ↦ suc 𝑎) |
7 | 2, 6 | fvmptg 6592 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆‘𝐴) = suc 𝐴) |
8 | 1, 7 | mpdan 675 | 1 ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ↦ cmpt 5005 Oncon0 6027 suc csuc 6029 ‘cfv 6186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-ord 6030 df-on 6031 df-suc 6033 df-iota 6150 df-fun 6188 df-fv 6194 |
This theorem is referenced by: fin1a2lem2 9620 fin1a2lem6 9624 |
Copyright terms: Public domain | W3C validator |