MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem1 Structured version   Visualization version   GIF version

Theorem fin1a2lem1 10414
Description: Lemma for fin1a2 10429. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)

Proof of Theorem fin1a2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 onsuc 7805 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 suceq 6419 . . 3 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
3 fin1a2lem.a . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4 suceq 6419 . . . . 5 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
54cbvmptv 5225 . . . 4 (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎)
63, 5eqtri 2758 . . 3 𝑆 = (𝑎 ∈ On ↦ suc 𝑎)
72, 6fvmptg 6984 . 2 ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆𝐴) = suc 𝐴)
81, 7mpdan 687 1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cmpt 5201  Oncon0 6352  suc csuc 6354  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539
This theorem is referenced by:  fin1a2lem2  10415  fin1a2lem6  10419  onsucf1o  43296
  Copyright terms: Public domain W3C validator