| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10301. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| fin1a2lem1 | ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7738 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | suceq 6369 | . . 3 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
| 3 | fin1a2lem.a | . . . 4 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 4 | suceq 6369 | . . . . 5 ⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | |
| 5 | 4 | cbvmptv 5190 | . . . 4 ⊢ (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎) |
| 6 | 3, 5 | eqtri 2754 | . . 3 ⊢ 𝑆 = (𝑎 ∈ On ↦ suc 𝑎) |
| 7 | 2, 6 | fvmptg 6922 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆‘𝐴) = suc 𝐴) |
| 8 | 1, 7 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 Oncon0 6301 suc csuc 6303 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fv 6484 |
| This theorem is referenced by: fin1a2lem2 10287 fin1a2lem6 10291 onsucf1o 43305 |
| Copyright terms: Public domain | W3C validator |