MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem1 Structured version   Visualization version   GIF version

Theorem fin1a2lem1 10313
Description: Lemma for fin1a2 10328. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)

Proof of Theorem fin1a2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 onsuc 7751 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 suceq 6379 . . 3 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
3 fin1a2lem.a . . . 4 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4 suceq 6379 . . . . 5 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
54cbvmptv 5199 . . . 4 (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎)
63, 5eqtri 2752 . . 3 𝑆 = (𝑎 ∈ On ↦ suc 𝑎)
72, 6fvmptg 6932 . 2 ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆𝐴) = suc 𝐴)
81, 7mpdan 687 1 (𝐴 ∈ On → (𝑆𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5176  Oncon0 6311  suc csuc 6313  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fin1a2lem2  10314  fin1a2lem6  10318  onsucf1o  43248
  Copyright terms: Public domain W3C validator