![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem1 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10405. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem1 | ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuc 7792 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | suceq 6420 | . . 3 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
3 | fin1a2lem.a | . . . 4 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
4 | suceq 6420 | . . . . 5 ⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | |
5 | 4 | cbvmptv 5251 | . . . 4 ⊢ (𝑥 ∈ On ↦ suc 𝑥) = (𝑎 ∈ On ↦ suc 𝑎) |
6 | 3, 5 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑎 ∈ On ↦ suc 𝑎) |
7 | 2, 6 | fvmptg 6986 | . 2 ⊢ ((𝐴 ∈ On ∧ suc 𝐴 ∈ On) → (𝑆‘𝐴) = suc 𝐴) |
8 | 1, 7 | mpdan 684 | 1 ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5221 Oncon0 6354 suc csuc 6356 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fv 6541 |
This theorem is referenced by: fin1a2lem2 10391 fin1a2lem6 10395 onsucf1o 42477 |
Copyright terms: Public domain | W3C validator |