![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unen | Structured version Visualization version GIF version |
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
unen | ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8231 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑥 𝑥:𝐴–1-1-onto→𝐵) | |
2 | bren 8231 | . . 3 ⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) | |
3 | exdistrv 2056 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷)) | |
4 | vex 3417 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3417 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | unex 7216 | . . . . . . 7 ⊢ (𝑥 ∪ 𝑦) ∈ V |
7 | f1oun 6397 | . . . . . . 7 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) | |
8 | f1oen3g 8238 | . . . . . . 7 ⊢ (((𝑥 ∪ 𝑦) ∈ V ∧ (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
9 | 6, 7, 8 | sylancr 583 | . . . . . 6 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
10 | 9 | ex 403 | . . . . 5 ⊢ ((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
11 | 10 | exlimivv 2033 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
12 | 3, 11 | sylbir 227 | . . 3 ⊢ ((∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
13 | 1, 2, 12 | syl2anb 593 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
14 | 13 | imp 397 | 1 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∃wex 1880 ∈ wcel 2166 Vcvv 3414 ∪ cun 3796 ∩ cin 3797 ∅c0 4144 class class class wbr 4873 –1-1-onto→wf1o 6122 ≈ cen 8219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-en 8223 |
This theorem is referenced by: difsnen 8311 undom 8317 limensuci 8405 infensuc 8407 phplem2 8409 pssnn 8447 dif1en 8462 unfi 8496 infdifsn 8831 pm54.43 9139 dif1card 9146 cdaun 9309 cdaen 9310 ssfin4 9447 fin23lem26 9462 unsnen 9690 fzennn 13062 mreexexlem4d 16660 |
Copyright terms: Public domain | W3C validator |