MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unen Structured version   Visualization version   GIF version

Theorem unen 8978
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem unen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8889 . . 3 (𝐴𝐵 ↔ ∃𝑥 𝑥:𝐴1-1-onto𝐵)
2 bren 8889 . . 3 (𝐶𝐷 ↔ ∃𝑦 𝑦:𝐶1-1-onto𝐷)
3 exdistrv 1955 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ↔ (∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷))
4 vex 3442 . . . . . . . 8 𝑥 ∈ V
5 vex 3442 . . . . . . . 8 𝑦 ∈ V
64, 5unex 7684 . . . . . . 7 (𝑥𝑦) ∈ V
7 f1oun 6787 . . . . . . 7 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
8 f1oen3g 8899 . . . . . . 7 (((𝑥𝑦) ∈ V ∧ (𝑥𝑦):(𝐴𝐶)–1-1-onto→(𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
96, 7, 8sylancr 587 . . . . . 6 (((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
109ex 412 . . . . 5 ((𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1110exlimivv 1932 . . . 4 (∃𝑥𝑦(𝑥:𝐴1-1-onto𝐵𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
123, 11sylbir 235 . . 3 ((∃𝑥 𝑥:𝐴1-1-onto𝐵 ∧ ∃𝑦 𝑦:𝐶1-1-onto𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
131, 2, 12syl2anb 598 . 2 ((𝐴𝐵𝐶𝐷) → (((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷)))
1413imp 406 1 (((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cun 3903  cin 3904  c0 4286   class class class wbr 5095  1-1-ontowf1o 6485  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-en 8880
This theorem is referenced by:  enrefnn  8979  difsnen  8983  limensuci  9077  infensuc  9079  pssnn  9092  unfi  9095  dif1ennnALT  9180  infdifsn  9572  pm54.43  9916  dif1card  9923  endjudisj  10082  djuen  10083  ssfin4  10223  fin23lem26  10238  unsnen  10466  fzennn  13893  mreexexlem4d  17571
  Copyright terms: Public domain W3C validator