| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| unen | ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 8964 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑥 𝑥:𝐴–1-1-onto→𝐵) | |
| 2 | bren 8964 | . . 3 ⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) | |
| 3 | exdistrv 1954 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷)) | |
| 4 | vex 3461 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 3461 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | unex 7733 | . . . . . . 7 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 7 | f1oun 6834 | . . . . . . 7 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) | |
| 8 | f1oen3g 8976 | . . . . . . 7 ⊢ (((𝑥 ∪ 𝑦) ∈ V ∧ (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
| 10 | 9 | ex 412 | . . . . 5 ⊢ ((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
| 11 | 10 | exlimivv 1931 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
| 12 | 3, 11 | sylbir 235 | . . 3 ⊢ ((∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
| 13 | 1, 2, 12 | syl2anb 598 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
| 14 | 13 | imp 406 | 1 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3457 ∪ cun 3922 ∩ cin 3923 ∅c0 4306 class class class wbr 5117 –1-1-onto→wf1o 6527 ≈ cen 8951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-en 8955 |
| This theorem is referenced by: enrefnn 9056 enpr2dOLD 9059 difsnen 9062 undomOLD 9069 limensuci 9162 infensuc 9164 pssnn 9177 unfi 9180 phplem2OLD 9224 dif1ennnALT 9278 infdifsn 9664 pm54.43 10008 dif1card 10017 endjudisj 10176 djuen 10177 ssfin4 10317 fin23lem26 10332 unsnen 10560 fzennn 13976 mreexexlem4d 17646 |
| Copyright terms: Public domain | W3C validator |