![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unen | Structured version Visualization version GIF version |
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
unen | ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8994 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑥 𝑥:𝐴–1-1-onto→𝐵) | |
2 | bren 8994 | . . 3 ⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) | |
3 | exdistrv 1953 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷)) | |
4 | vex 3482 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3482 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | unex 7763 | . . . . . . 7 ⊢ (𝑥 ∪ 𝑦) ∈ V |
7 | f1oun 6868 | . . . . . . 7 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) | |
8 | f1oen3g 9006 | . . . . . . 7 ⊢ (((𝑥 ∪ 𝑦) ∈ V ∧ (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
10 | 9 | ex 412 | . . . . 5 ⊢ ((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
11 | 10 | exlimivv 1930 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
12 | 3, 11 | sylbir 235 | . . 3 ⊢ ((∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
13 | 1, 2, 12 | syl2anb 598 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
14 | 13 | imp 406 | 1 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 class class class wbr 5148 –1-1-onto→wf1o 6562 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 |
This theorem is referenced by: enrefnn 9086 enpr2dOLD 9089 difsnen 9092 undomOLD 9099 limensuci 9192 infensuc 9194 pssnn 9207 unfi 9210 phplem2OLD 9253 dif1ennnALT 9309 infdifsn 9695 pm54.43 10039 dif1card 10048 endjudisj 10207 djuen 10208 ssfin4 10348 fin23lem26 10363 unsnen 10591 fzennn 14006 mreexexlem4d 17692 |
Copyright terms: Public domain | W3C validator |