Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unen | Structured version Visualization version GIF version |
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
unen | ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8717 | . . 3 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑥 𝑥:𝐴–1-1-onto→𝐵) | |
2 | bren 8717 | . . 3 ⊢ (𝐶 ≈ 𝐷 ↔ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) | |
3 | exdistrv 1962 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷)) | |
4 | vex 3434 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3434 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | unex 7587 | . . . . . . 7 ⊢ (𝑥 ∪ 𝑦) ∈ V |
7 | f1oun 6731 | . . . . . . 7 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) | |
8 | f1oen3g 8725 | . . . . . . 7 ⊢ (((𝑥 ∪ 𝑦) ∈ V ∧ (𝑥 ∪ 𝑦):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
9 | 6, 7, 8 | sylancr 586 | . . . . . 6 ⊢ (((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
10 | 9 | ex 412 | . . . . 5 ⊢ ((𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
11 | 10 | exlimivv 1938 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
12 | 3, 11 | sylbir 234 | . . 3 ⊢ ((∃𝑥 𝑥:𝐴–1-1-onto→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
13 | 1, 2, 12 | syl2anb 597 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷))) |
14 | 13 | imp 406 | 1 ⊢ (((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐴 ∪ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 ∩ cin 3890 ∅c0 4261 class class class wbr 5078 –1-1-onto→wf1o 6429 ≈ cen 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-en 8708 |
This theorem is referenced by: enrefnn 8807 enpr2d 8808 difsnen 8810 undom 8816 limensuci 8905 infensuc 8907 pssnn 8916 unfi 8920 phplem2OLD 8966 pssnnOLD 9001 dif1enALT 9011 unfiOLD 9042 infdifsn 9376 pm54.43 9743 dif1card 9750 endjudisj 9908 djuen 9909 ssfin4 10050 fin23lem26 10065 unsnen 10293 fzennn 13669 mreexexlem4d 17337 |
Copyright terms: Public domain | W3C validator |