Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin1 Structured version   Visualization version   GIF version

Theorem fnejoin1 35788
Description: Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fnejoin1
StepHypRef Expression
1 elssuni 4935 . . . . . 6 (𝐴𝑆𝐴 𝑆)
213ad2ant3 1133 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
32unissd 4913 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
4 eqimss2 4037 . . . . . . . . . 10 (𝑋 = 𝑦 𝑦𝑋)
5 sspwuni 5097 . . . . . . . . . 10 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
64, 5sylibr 233 . . . . . . . . 9 (𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋)
76ralimi 3078 . . . . . . . 8 (∀𝑦𝑆 𝑋 = 𝑦 → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
873ad2ant2 1132 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
9 unissb 4937 . . . . . . 7 ( 𝑆 ⊆ 𝒫 𝑋 ↔ ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
108, 9sylibr 233 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ 𝒫 𝑋)
11 sspwuni 5097 . . . . . 6 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
1210, 11sylib 217 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆𝑋)
13 unieq 4914 . . . . . . . 8 (𝑦 = 𝐴 𝑦 = 𝐴)
1413eqeq2d 2738 . . . . . . 7 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝐴))
1514rspccva 3606 . . . . . 6 ((∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
16153adant1 1128 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
1712, 16sseqtrd 4018 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 𝐴)
183, 17eqssd 3995 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 = 𝑆)
19 pwexg 5372 . . . . . . 7 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
20193ad2ant1 1131 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝒫 𝑋 ∈ V)
2120, 10ssexd 5318 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ∈ V)
22 bastg 22856 . . . . 5 ( 𝑆 ∈ V → 𝑆 ⊆ (topGen‘ 𝑆))
2321, 22syl 17 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ (topGen‘ 𝑆))
242, 23sstrd 3988 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 ⊆ (topGen‘ 𝑆))
25 eqid 2727 . . . 4 𝐴 = 𝐴
26 eqid 2727 . . . 4 𝑆 = 𝑆
2725, 26isfne4 35760 . . 3 (𝐴Fne 𝑆 ↔ ( 𝐴 = 𝑆𝐴 ⊆ (topGen‘ 𝑆)))
2818, 24, 27sylanbrc 582 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fne 𝑆)
29 ne0i 4330 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
30293ad2ant3 1133 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ≠ ∅)
31 ifnefalse 4536 . . 3 (𝑆 ≠ ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3230, 31syl 17 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3328, 32breqtrrd 5170 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  Vcvv 3469  wss 3944  c0 4318  ifcif 4524  𝒫 cpw 4598  {csn 4624   cuni 4903   class class class wbr 5142  cfv 6542  topGenctg 17410  Fnecfne 35756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-topgen 17416  df-fne 35757
This theorem is referenced by:  fnejoin2  35789
  Copyright terms: Public domain W3C validator