Proof of Theorem fnejoin1
Step | Hyp | Ref
| Expression |
1 | | elssuni 4868 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) |
2 | 1 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
3 | 2 | unissd 4846 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 ⊆ ∪ ∪ 𝑆) |
4 | | eqimss2 3974 |
. . . . . . . . . 10
⊢ (𝑋 = ∪
𝑦 → ∪ 𝑦
⊆ 𝑋) |
5 | | sspwuni 5025 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦
⊆ 𝑋) |
6 | 4, 5 | sylibr 233 |
. . . . . . . . 9
⊢ (𝑋 = ∪
𝑦 → 𝑦 ⊆ 𝒫 𝑋) |
7 | 6 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 → ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
8 | 7 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
9 | | unissb 4870 |
. . . . . . 7
⊢ (∪ 𝑆
⊆ 𝒫 𝑋 ↔
∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
10 | 8, 9 | sylibr 233 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ⊆ 𝒫 𝑋) |
11 | | sspwuni 5025 |
. . . . . 6
⊢ (∪ 𝑆
⊆ 𝒫 𝑋 ↔
∪ ∪ 𝑆 ⊆ 𝑋) |
12 | 10, 11 | sylib 217 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ ∪ 𝑆
⊆ 𝑋) |
13 | | unieq 4847 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪
𝐴) |
14 | 13 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐴)) |
15 | 14 | rspccva 3551 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
16 | 15 | 3adant1 1128 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
17 | 12, 16 | sseqtrd 3957 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ ∪ 𝑆
⊆ ∪ 𝐴) |
18 | 3, 17 | eqssd 3934 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 = ∪
∪ 𝑆) |
19 | | pwexg 5296 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) |
20 | 19 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝒫 𝑋 ∈ V) |
21 | 20, 10 | ssexd 5243 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ∈ V) |
22 | | bastg 22024 |
. . . . 5
⊢ (∪ 𝑆
∈ V → ∪ 𝑆 ⊆ (topGen‘∪ 𝑆)) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ⊆ (topGen‘∪ 𝑆)) |
24 | 2, 23 | sstrd 3927 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ (topGen‘∪ 𝑆)) |
25 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
26 | | eqid 2738 |
. . . 4
⊢ ∪ ∪ 𝑆 = ∪ ∪ 𝑆 |
27 | 25, 26 | isfne4 34456 |
. . 3
⊢ (𝐴Fne∪
𝑆 ↔ (∪ 𝐴 =
∪ ∪ 𝑆 ∧ 𝐴 ⊆ (topGen‘∪ 𝑆))) |
28 | 18, 24, 27 | sylanbrc 582 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴Fne∪ 𝑆) |
29 | | ne0i 4265 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) |
30 | 29 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑆 ≠ ∅) |
31 | | ifnefalse 4468 |
. . 3
⊢ (𝑆 ≠ ∅ → if(𝑆 = ∅, {𝑋}, ∪ 𝑆) = ∪
𝑆) |
32 | 30, 31 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → if(𝑆 = ∅, {𝑋}, ∪ 𝑆) = ∪
𝑆) |
33 | 28, 32 | breqtrrd 5098 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, ∪ 𝑆)) |