Proof of Theorem fnejoin1
| Step | Hyp | Ref
| Expression |
| 1 | | elssuni 4917 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) |
| 2 | 1 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
| 3 | 2 | unissd 4897 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 ⊆ ∪ ∪ 𝑆) |
| 4 | | eqimss2 4023 |
. . . . . . . . . 10
⊢ (𝑋 = ∪
𝑦 → ∪ 𝑦
⊆ 𝑋) |
| 5 | | sspwuni 5080 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦
⊆ 𝑋) |
| 6 | 4, 5 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑋 = ∪
𝑦 → 𝑦 ⊆ 𝒫 𝑋) |
| 7 | 6 | ralimi 3072 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 → ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
| 8 | 7 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
| 9 | | unissb 4919 |
. . . . . . 7
⊢ (∪ 𝑆
⊆ 𝒫 𝑋 ↔
∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝒫 𝑋) |
| 10 | 8, 9 | sylibr 234 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ⊆ 𝒫 𝑋) |
| 11 | | sspwuni 5080 |
. . . . . 6
⊢ (∪ 𝑆
⊆ 𝒫 𝑋 ↔
∪ ∪ 𝑆 ⊆ 𝑋) |
| 12 | 10, 11 | sylib 218 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ ∪ 𝑆
⊆ 𝑋) |
| 13 | | unieq 4898 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪
𝐴) |
| 14 | 13 | eqeq2d 2745 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐴)) |
| 15 | 14 | rspccva 3604 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
| 16 | 15 | 3adant1 1130 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
| 17 | 12, 16 | sseqtrd 4000 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ ∪ 𝑆
⊆ ∪ 𝐴) |
| 18 | 3, 17 | eqssd 3981 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 = ∪
∪ 𝑆) |
| 19 | | pwexg 5358 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) |
| 20 | 19 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝒫 𝑋 ∈ V) |
| 21 | 20, 10 | ssexd 5304 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ∈ V) |
| 22 | | bastg 22920 |
. . . . 5
⊢ (∪ 𝑆
∈ V → ∪ 𝑆 ⊆ (topGen‘∪ 𝑆)) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝑆 ⊆ (topGen‘∪ 𝑆)) |
| 24 | 2, 23 | sstrd 3974 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ (topGen‘∪ 𝑆)) |
| 25 | | eqid 2734 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
| 26 | | eqid 2734 |
. . . 4
⊢ ∪ ∪ 𝑆 = ∪ ∪ 𝑆 |
| 27 | 25, 26 | isfne4 36300 |
. . 3
⊢ (𝐴Fne∪
𝑆 ↔ (∪ 𝐴 =
∪ ∪ 𝑆 ∧ 𝐴 ⊆ (topGen‘∪ 𝑆))) |
| 28 | 18, 24, 27 | sylanbrc 583 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴Fne∪ 𝑆) |
| 29 | | ne0i 4321 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) |
| 30 | 29 | 3ad2ant3 1135 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑆 ≠ ∅) |
| 31 | | ifnefalse 4517 |
. . 3
⊢ (𝑆 ≠ ∅ → if(𝑆 = ∅, {𝑋}, ∪ 𝑆) = ∪
𝑆) |
| 32 | 30, 31 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → if(𝑆 = ∅, {𝑋}, ∪ 𝑆) = ∪
𝑆) |
| 33 | 28, 32 | breqtrrd 5151 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, ∪ 𝑆)) |