Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin1 Structured version   Visualization version   GIF version

Theorem fnejoin1 36363
Description: Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fnejoin1
StepHypRef Expression
1 elssuni 4945 . . . . . 6 (𝐴𝑆𝐴 𝑆)
213ad2ant3 1136 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
32unissd 4925 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
4 eqimss2 4058 . . . . . . . . . 10 (𝑋 = 𝑦 𝑦𝑋)
5 sspwuni 5108 . . . . . . . . . 10 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
64, 5sylibr 234 . . . . . . . . 9 (𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋)
76ralimi 3083 . . . . . . . 8 (∀𝑦𝑆 𝑋 = 𝑦 → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
873ad2ant2 1135 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
9 unissb 4947 . . . . . . 7 ( 𝑆 ⊆ 𝒫 𝑋 ↔ ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
108, 9sylibr 234 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ 𝒫 𝑋)
11 sspwuni 5108 . . . . . 6 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
1210, 11sylib 218 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆𝑋)
13 unieq 4926 . . . . . . . 8 (𝑦 = 𝐴 𝑦 = 𝐴)
1413eqeq2d 2748 . . . . . . 7 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝐴))
1514rspccva 3624 . . . . . 6 ((∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
16153adant1 1131 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
1712, 16sseqtrd 4039 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 𝐴)
183, 17eqssd 4016 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 = 𝑆)
19 pwexg 5387 . . . . . . 7 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
20193ad2ant1 1134 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝒫 𝑋 ∈ V)
2120, 10ssexd 5333 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ∈ V)
22 bastg 22998 . . . . 5 ( 𝑆 ∈ V → 𝑆 ⊆ (topGen‘ 𝑆))
2321, 22syl 17 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ (topGen‘ 𝑆))
242, 23sstrd 4009 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 ⊆ (topGen‘ 𝑆))
25 eqid 2737 . . . 4 𝐴 = 𝐴
26 eqid 2737 . . . 4 𝑆 = 𝑆
2725, 26isfne4 36335 . . 3 (𝐴Fne 𝑆 ↔ ( 𝐴 = 𝑆𝐴 ⊆ (topGen‘ 𝑆)))
2818, 24, 27sylanbrc 583 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fne 𝑆)
29 ne0i 4350 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
30293ad2ant3 1136 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ≠ ∅)
31 ifnefalse 4546 . . 3 (𝑆 ≠ ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3230, 31syl 17 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3328, 32breqtrrd 5179 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wral 3061  Vcvv 3481  wss 3966  c0 4342  ifcif 4534  𝒫 cpw 4608  {csn 4634   cuni 4915   class class class wbr 5151  cfv 6569  topGenctg 17493  Fnecfne 36331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-topgen 17499  df-fne 36332
This theorem is referenced by:  fnejoin2  36364
  Copyright terms: Public domain W3C validator