MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgfvi Structured version   Visualization version   GIF version

Theorem mulgfvi 18971
Description: The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
mulgfvi.t · = (.g𝐺)
Assertion
Ref Expression
mulgfvi · = (.g‘( I ‘𝐺))

Proof of Theorem mulgfvi
StepHypRef Expression
1 mulgfvi.t . 2 · = (.g𝐺)
2 fvi 6903 . . . . 5 (𝐺 ∈ V → ( I ‘𝐺) = 𝐺)
32eqcomd 2735 . . . 4 (𝐺 ∈ V → 𝐺 = ( I ‘𝐺))
43fveq2d 6830 . . 3 (𝐺 ∈ V → (.g𝐺) = (.g‘( I ‘𝐺)))
5 fvprc 6818 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
6 fvprc 6818 . . . . . 6 𝐺 ∈ V → ( I ‘𝐺) = ∅)
76fveq2d 6830 . . . . 5 𝐺 ∈ V → (.g‘( I ‘𝐺)) = (.g‘∅))
8 base0 17144 . . . . . . . 8 ∅ = (Base‘∅)
9 eqid 2729 . . . . . . . 8 (.g‘∅) = (.g‘∅)
108, 9mulgfn 18970 . . . . . . 7 (.g‘∅) Fn (ℤ × ∅)
11 xp0 6111 . . . . . . . 8 (ℤ × ∅) = ∅
1211fneq2i 6584 . . . . . . 7 ((.g‘∅) Fn (ℤ × ∅) ↔ (.g‘∅) Fn ∅)
1310, 12mpbi 230 . . . . . 6 (.g‘∅) Fn ∅
14 fn0 6617 . . . . . 6 ((.g‘∅) Fn ∅ ↔ (.g‘∅) = ∅)
1513, 14mpbi 230 . . . . 5 (.g‘∅) = ∅
167, 15eqtrdi 2780 . . . 4 𝐺 ∈ V → (.g‘( I ‘𝐺)) = ∅)
175, 16eqtr4d 2767 . . 3 𝐺 ∈ V → (.g𝐺) = (.g‘( I ‘𝐺)))
184, 17pm2.61i 182 . 2 (.g𝐺) = (.g‘( I ‘𝐺))
191, 18eqtri 2752 1 · = (.g‘( I ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286   I cid 5517   × cxp 5621   Fn wfn 6481  cfv 6486  cz 12490  .gcmg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-seq 13928  df-slot 17112  df-ndx 17124  df-base 17140  df-mulg 18966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator