MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodf1f Structured version   Visualization version   GIF version

Theorem prodf1f 15484
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1f (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))

Proof of Theorem prodf1f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prodf1.1 . . . . 5 𝑍 = (ℤ𝑀)
21prodf1 15483 . . . 4 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1)
3 1ex 10854 . . . . 5 1 ∈ V
43fvconst2 7038 . . . 4 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) = 1)
52, 4eqtr4d 2781 . . 3 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))
65rgen 3072 . 2 𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)
7 seqfn 13613 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
81fneq2i 6495 . . . 4 (seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ↔ seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
97, 8sylibr 237 . . 3 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍)
103fconst 6624 . . . 4 (𝑍 × {1}):𝑍⟶{1}
11 ffn 6564 . . . 4 ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍)
1210, 11ax-mp 5 . . 3 (𝑍 × {1}) Fn 𝑍
13 eqfnfv 6871 . . 3 ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
149, 12, 13sylancl 589 . 2 (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
156, 14mpbiri 261 1 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2111  wral 3062  {csn 4556   × cxp 5564   Fn wfn 6393  wf 6394  cfv 6398  1c1 10755   · cmul 10759  cz 12201  cuz 12463  seqcseq 13601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-n0 12116  df-z 12202  df-uz 12464  df-fz 13121  df-seq 13602
This theorem is referenced by:  prodfclim1  15485
  Copyright terms: Public domain W3C validator