MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodf1f Structured version   Visualization version   GIF version

Theorem prodf1f 15865
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1f (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))

Proof of Theorem prodf1f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prodf1.1 . . . . 5 𝑍 = (ℤ𝑀)
21prodf1 15864 . . . 4 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1)
3 1ex 11177 . . . . 5 1 ∈ V
43fvconst2 7181 . . . 4 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) = 1)
52, 4eqtr4d 2768 . . 3 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))
65rgen 3047 . 2 𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)
7 seqfn 13985 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
81fneq2i 6619 . . . 4 (seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ↔ seq𝑀( · , (𝑍 × {1})) Fn (ℤ𝑀))
97, 8sylibr 234 . . 3 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍)
103fconst 6749 . . . 4 (𝑍 × {1}):𝑍⟶{1}
11 ffn 6691 . . . 4 ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍)
1210, 11ax-mp 5 . . 3 (𝑍 × {1}) Fn 𝑍
13 eqfnfv 7006 . . 3 ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
149, 12, 13sylancl 586 . 2 (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
156, 14mpbiri 258 1 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  {csn 4592   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  1c1 11076   · cmul 11080  cz 12536  cuz 12800  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974
This theorem is referenced by:  prodfclim1  15866
  Copyright terms: Public domain W3C validator