| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prodf1f | Structured version Visualization version GIF version | ||
| Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| prodf1f | ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodf1.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | prodf1 15816 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1) |
| 3 | 1ex 11130 | . . . . 5 ⊢ 1 ∈ V | |
| 4 | 3 | fvconst2 7144 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
| 5 | 2, 4 | eqtr4d 2767 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)) |
| 6 | 5 | rgen 3046 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘) |
| 7 | seqfn 13938 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn (ℤ≥‘𝑀)) | |
| 8 | 1 | fneq2i 6584 | . . . 4 ⊢ (seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ↔ seq𝑀( · , (𝑍 × {1})) Fn (ℤ≥‘𝑀)) |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍) |
| 10 | 3 | fconst 6714 | . . . 4 ⊢ (𝑍 × {1}):𝑍⟶{1} |
| 11 | ffn 6656 | . . . 4 ⊢ ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝑍 × {1}) Fn 𝑍 |
| 13 | eqfnfv 6969 | . . 3 ⊢ ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) | |
| 14 | 9, 12, 13 | sylancl 586 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) |
| 15 | 6, 14 | mpbiri 258 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {csn 4579 × cxp 5621 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 1c1 11029 · cmul 11033 ℤcz 12489 ℤ≥cuz 12753 seqcseq 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 |
| This theorem is referenced by: prodfclim1 15818 |
| Copyright terms: Public domain | W3C validator |