Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prodf1f | Structured version Visualization version GIF version |
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
prodf1f | ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodf1.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | prodf1 15483 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1) |
3 | 1ex 10854 | . . . . 5 ⊢ 1 ∈ V | |
4 | 3 | fvconst2 7038 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
5 | 2, 4 | eqtr4d 2781 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)) |
6 | 5 | rgen 3072 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘) |
7 | seqfn 13613 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn (ℤ≥‘𝑀)) | |
8 | 1 | fneq2i 6495 | . . . 4 ⊢ (seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ↔ seq𝑀( · , (𝑍 × {1})) Fn (ℤ≥‘𝑀)) |
9 | 7, 8 | sylibr 237 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍) |
10 | 3 | fconst 6624 | . . . 4 ⊢ (𝑍 × {1}):𝑍⟶{1} |
11 | ffn 6564 | . . . 4 ⊢ ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝑍 × {1}) Fn 𝑍 |
13 | eqfnfv 6871 | . . 3 ⊢ ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) | |
14 | 9, 12, 13 | sylancl 589 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) |
15 | 6, 14 | mpbiri 261 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2111 ∀wral 3062 {csn 4556 × cxp 5564 Fn wfn 6393 ⟶wf 6394 ‘cfv 6398 1c1 10755 · cmul 10759 ℤcz 12201 ℤ≥cuz 12463 seqcseq 13601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-seq 13602 |
This theorem is referenced by: prodfclim1 15485 |
Copyright terms: Public domain | W3C validator |