Step | Hyp | Ref
| Expression |
1 | | elfznn 13285 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ) |
2 | 1 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ) |
3 | 2 | nncnd 11989 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ) |
4 | | 1cnd 10970 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ) |
5 | 2 | nnne0d 12023 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0) |
6 | 3, 4, 3, 5 | divdird 11789 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚))) |
7 | 3, 5 | dividd 11749 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1) |
8 | 7 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚))) |
9 | 6, 8 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚))) |
10 | 9 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚)))) |
11 | | peano2nn 11985 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
12 | 2, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ) |
13 | 12 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈
ℝ+) |
14 | 2 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+) |
15 | 13, 14 | relogdivd 25781 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚))) |
16 | 10, 15 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚))) |
17 | 16 | sumeq2dv 15415 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚))) |
18 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚)) |
19 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1))) |
20 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 1 → (log‘𝑥) =
(log‘1)) |
21 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1))) |
22 | | nnz 12342 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
23 | | peano2nn 11985 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
24 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
25 | 23, 24 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
(ℤ≥‘1)) |
26 | | elfznn 13285 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ) |
27 | 26 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ) |
28 | 27 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+) |
29 | 28 | relogcld 25778 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ) |
30 | 29 | recnd 11003 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ) |
31 | 18, 19, 20, 21, 22, 25, 30 | telfsum2 15517 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) −
(log‘1))) |
32 | | log1 25741 |
. . . . . . . 8
⊢
(log‘1) = 0 |
33 | 32 | oveq2i 7286 |
. . . . . . 7
⊢
((log‘(𝑛 + 1))
− (log‘1)) = ((log‘(𝑛 + 1)) − 0) |
34 | 23 | nnrpd 12770 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ+) |
35 | 34 | relogcld 25778 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(log‘(𝑛 + 1)) ∈
ℝ) |
36 | 35 | recnd 11003 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(log‘(𝑛 + 1)) ∈
ℂ) |
37 | 36 | subid1d 11321 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((log‘(𝑛 + 1))
− 0) = (log‘(𝑛
+ 1))) |
38 | 33, 37 | eqtrid 2790 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
((log‘(𝑛 + 1))
− (log‘1)) = (log‘(𝑛 + 1))) |
39 | 17, 31, 38 | 3eqtrd 2782 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1))) |
40 | 39 | oveq2d 7291 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
41 | | fzfid 13693 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(1...𝑛) ∈
Fin) |
42 | 2 | nnrecred 12024 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ) |
43 | 42 | recnd 11003 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ) |
44 | | 1rp 12734 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
45 | 14 | rpreccld 12782 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈
ℝ+) |
46 | | rpaddcl 12752 |
. . . . . . . . 9
⊢ ((1
∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1
/ 𝑚)) ∈
ℝ+) |
47 | 44, 45, 46 | sylancr 587 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈
ℝ+) |
48 | 47 | relogcld 25778 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈
ℝ) |
49 | 48 | recnd 11003 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈
ℂ) |
50 | 41, 43, 49 | fsumsub 15500 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))))) |
51 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
52 | 51 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
53 | 52 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
54 | 51, 53 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
55 | | emcl.4 |
. . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 /
𝑛))))) |
56 | | ovex 7308 |
. . . . . . . 8
⊢ ((1 /
𝑚) − (log‘(1 +
(1 / 𝑚)))) ∈
V |
57 | 54, 55, 56 | fvmpt 6875 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
58 | 2, 57 | syl 17 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇‘𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
59 | | id 22 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
60 | 59, 24 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
61 | 42, 48 | resubcld 11403 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈
ℝ) |
62 | 61 | recnd 11003 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈
ℂ) |
63 | 58, 60, 62 | fsumser 15442 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛)) |
64 | 50, 63 | eqtr3d 2780 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛)) |
65 | 40, 64 | eqtr3d 2780 |
. . 3
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛)) |
66 | 65 | mpteq2ia 5177 |
. 2
⊢ (𝑛 ∈ ℕ ↦
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)) |
67 | | emcl.2 |
. 2
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
68 | | 1z 12350 |
. . . . 5
⊢ 1 ∈
ℤ |
69 | | seqfn 13733 |
. . . . 5
⊢ (1 ∈
ℤ → seq1( + , 𝑇)
Fn (ℤ≥‘1)) |
70 | 68, 69 | ax-mp 5 |
. . . 4
⊢ seq1( + ,
𝑇) Fn
(ℤ≥‘1) |
71 | 24 | fneq2i 6531 |
. . . 4
⊢ (seq1( +
, 𝑇) Fn ℕ ↔
seq1( + , 𝑇) Fn
(ℤ≥‘1)) |
72 | 70, 71 | mpbir 230 |
. . 3
⊢ seq1( + ,
𝑇) Fn
ℕ |
73 | | dffn5 6828 |
. . 3
⊢ (seq1( +
, 𝑇) Fn ℕ ↔
seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( +
, 𝑇)‘𝑛))) |
74 | 72, 73 | mpbi 229 |
. 2
⊢ seq1( + ,
𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)) |
75 | 66, 67, 74 | 3eqtr4i 2776 |
1
⊢ 𝐺 = seq1( + , 𝑇) |