MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   GIF version

Theorem emcllem5 26493
Description: Lemma for emcl 26496. The partial sums of the series 𝑇, which is used in Definition df-em 26486, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem5 𝐺 = seq1( + , 𝑇)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13526 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
21adantl 482 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ)
32nncnd 12224 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ)
4 1cnd 11205 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ)
52nnne0d 12258 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0)
63, 4, 3, 5divdird 12024 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
73, 5dividd 11984 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1)
87oveq1d 7420 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
96, 8eqtrd 2772 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚)))
109fveq2d 6892 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚))))
11 peano2nn 12220 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
122, 11syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ)
1312nnrpd 13010 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℝ+)
142nnrpd 13010 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+)
1513, 14relogdivd 26125 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1610, 15eqtr3d 2774 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1716sumeq2dv 15645 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)))
18 fveq2 6888 . . . . . . 7 (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚))
19 fveq2 6888 . . . . . . 7 (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1)))
20 fveq2 6888 . . . . . . 7 (𝑥 = 1 → (log‘𝑥) = (log‘1))
21 fveq2 6888 . . . . . . 7 (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1)))
22 nnz 12575 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
23 peano2nn 12220 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
24 nnuz 12861 . . . . . . . 8 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2843 . . . . . . 7 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
26 elfznn 13526 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
2726adantl 482 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
2827nnrpd 13010 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+)
2928relogcld 26122 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ)
3029recnd 11238 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ)
3118, 19, 20, 21, 22, 25, 30telfsum2 15747 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) − (log‘1)))
32 log1 26085 . . . . . . . 8 (log‘1) = 0
3332oveq2i 7416 . . . . . . 7 ((log‘(𝑛 + 1)) − (log‘1)) = ((log‘(𝑛 + 1)) − 0)
3423nnrpd 13010 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
3534relogcld 26122 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℝ)
3635recnd 11238 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℂ)
3736subid1d 11556 . . . . . . 7 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − 0) = (log‘(𝑛 + 1)))
3833, 37eqtrid 2784 . . . . . 6 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − (log‘1)) = (log‘(𝑛 + 1)))
3917, 31, 383eqtrd 2776 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1)))
4039oveq2d 7421 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
41 fzfid 13934 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
422nnrecred 12259 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ)
4342recnd 11238 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ)
44 1rp 12974 . . . . . . . . 9 1 ∈ ℝ+
4514rpreccld 13022 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ+)
46 rpaddcl 12992 . . . . . . . . 9 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
4744, 45, 46sylancr 587 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈ ℝ+)
4847relogcld 26122 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
4948recnd 11238 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℂ)
5041, 43, 49fsumsub 15730 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))))
51 oveq2 7413 . . . . . . . . 9 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5251oveq2d 7421 . . . . . . . . . 10 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
5352fveq2d 6892 . . . . . . . . 9 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
5451, 53oveq12d 7423 . . . . . . . 8 (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
55 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
56 ovex 7438 . . . . . . . 8 ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ V
5754, 55, 56fvmpt 6995 . . . . . . 7 (𝑚 ∈ ℕ → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
582, 57syl 17 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
59 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6059, 24eleqtrdi 2843 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
6142, 48resubcld 11638 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℝ)
6261recnd 11238 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℂ)
6358, 60, 62fsumser 15672 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6450, 63eqtr3d 2774 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6540, 64eqtr3d 2774 . . 3 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛))
6665mpteq2ia 5250 . 2 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
67 emcl.2 . 2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
68 1z 12588 . . . . 5 1 ∈ ℤ
69 seqfn 13974 . . . . 5 (1 ∈ ℤ → seq1( + , 𝑇) Fn (ℤ‘1))
7068, 69ax-mp 5 . . . 4 seq1( + , 𝑇) Fn (ℤ‘1)
7124fneq2i 6644 . . . 4 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) Fn (ℤ‘1))
7270, 71mpbir 230 . . 3 seq1( + , 𝑇) Fn ℕ
73 dffn5 6947 . . 3 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)))
7472, 73mpbi 229 . 2 seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
7566, 67, 743eqtr4i 2770 1 𝐺 = seq1( + , 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  cmpt 5230   Fn wfn 6535  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  cmin 11440   / cdiv 11867  cn 12208  cz 12554  cuz 12818  +crp 12970  ...cfz 13480  seqcseq 13962  Σcsu 15628  logclog 26054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-log 26056
This theorem is referenced by:  emcllem6  26494
  Copyright terms: Public domain W3C validator