MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   GIF version

Theorem emcllem5 26908
Description: Lemma for emcl 26911. The partial sums of the series 𝑇, which is used in Definition df-em 26901, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem5 𝐺 = seq1( + , 𝑇)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13456 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
21adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ)
32nncnd 12144 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ)
4 1cnd 11110 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ)
52nnne0d 12178 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0)
63, 4, 3, 5divdird 11938 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
73, 5dividd 11898 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1)
87oveq1d 7364 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
96, 8eqtrd 2764 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚)))
109fveq2d 6826 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚))))
11 peano2nn 12140 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
122, 11syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ)
1312nnrpd 12935 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℝ+)
142nnrpd 12935 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+)
1513, 14relogdivd 26533 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1610, 15eqtr3d 2766 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1716sumeq2dv 15609 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)))
18 fveq2 6822 . . . . . . 7 (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚))
19 fveq2 6822 . . . . . . 7 (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1)))
20 fveq2 6822 . . . . . . 7 (𝑥 = 1 → (log‘𝑥) = (log‘1))
21 fveq2 6822 . . . . . . 7 (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1)))
22 nnz 12492 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
23 peano2nn 12140 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
24 nnuz 12778 . . . . . . . 8 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2838 . . . . . . 7 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
26 elfznn 13456 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
2827nnrpd 12935 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+)
2928relogcld 26530 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ)
3029recnd 11143 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ)
3118, 19, 20, 21, 22, 25, 30telfsum2 15712 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) − (log‘1)))
32 log1 26492 . . . . . . . 8 (log‘1) = 0
3332oveq2i 7360 . . . . . . 7 ((log‘(𝑛 + 1)) − (log‘1)) = ((log‘(𝑛 + 1)) − 0)
3423nnrpd 12935 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
3534relogcld 26530 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℝ)
3635recnd 11143 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℂ)
3736subid1d 11464 . . . . . . 7 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − 0) = (log‘(𝑛 + 1)))
3833, 37eqtrid 2776 . . . . . 6 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − (log‘1)) = (log‘(𝑛 + 1)))
3917, 31, 383eqtrd 2768 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1)))
4039oveq2d 7365 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
41 fzfid 13880 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
422nnrecred 12179 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ)
4342recnd 11143 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ)
44 1rp 12897 . . . . . . . . 9 1 ∈ ℝ+
4514rpreccld 12947 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ+)
46 rpaddcl 12917 . . . . . . . . 9 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
4744, 45, 46sylancr 587 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈ ℝ+)
4847relogcld 26530 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
4948recnd 11143 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℂ)
5041, 43, 49fsumsub 15695 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))))
51 oveq2 7357 . . . . . . . . 9 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5251oveq2d 7365 . . . . . . . . . 10 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
5352fveq2d 6826 . . . . . . . . 9 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
5451, 53oveq12d 7367 . . . . . . . 8 (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
55 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
56 ovex 7382 . . . . . . . 8 ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ V
5754, 55, 56fvmpt 6930 . . . . . . 7 (𝑚 ∈ ℕ → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
582, 57syl 17 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
59 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6059, 24eleqtrdi 2838 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
6142, 48resubcld 11548 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℝ)
6261recnd 11143 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℂ)
6358, 60, 62fsumser 15637 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6450, 63eqtr3d 2766 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6540, 64eqtr3d 2766 . . 3 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛))
6665mpteq2ia 5187 . 2 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
67 emcl.2 . 2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
68 1z 12505 . . . . 5 1 ∈ ℤ
69 seqfn 13920 . . . . 5 (1 ∈ ℤ → seq1( + , 𝑇) Fn (ℤ‘1))
7068, 69ax-mp 5 . . . 4 seq1( + , 𝑇) Fn (ℤ‘1)
7124fneq2i 6580 . . . 4 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) Fn (ℤ‘1))
7270, 71mpbir 231 . . 3 seq1( + , 𝑇) Fn ℕ
73 dffn5 6881 . . 3 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)))
7472, 73mpbi 230 . 2 seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
7566, 67, 743eqtr4i 2762 1 𝐺 = seq1( + , 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cmpt 5173   Fn wfn 6477  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  seqcseq 13908  Σcsu 15593  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  emcllem6  26909
  Copyright terms: Public domain W3C validator