MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   GIF version

Theorem emcllem5 26054
Description: Lemma for emcl 26057. The partial sums of the series 𝑇, which is used in Definition df-em 26047, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem5 𝐺 = seq1( + , 𝑇)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13214 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
21adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ)
32nncnd 11919 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ)
4 1cnd 10901 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ)
52nnne0d 11953 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0)
63, 4, 3, 5divdird 11719 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
73, 5dividd 11679 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1)
87oveq1d 7270 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
96, 8eqtrd 2778 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚)))
109fveq2d 6760 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚))))
11 peano2nn 11915 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
122, 11syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ)
1312nnrpd 12699 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℝ+)
142nnrpd 12699 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+)
1513, 14relogdivd 25686 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1610, 15eqtr3d 2780 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1716sumeq2dv 15343 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)))
18 fveq2 6756 . . . . . . 7 (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚))
19 fveq2 6756 . . . . . . 7 (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1)))
20 fveq2 6756 . . . . . . 7 (𝑥 = 1 → (log‘𝑥) = (log‘1))
21 fveq2 6756 . . . . . . 7 (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1)))
22 nnz 12272 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
23 peano2nn 11915 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
24 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2849 . . . . . . 7 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
26 elfznn 13214 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
2726adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
2827nnrpd 12699 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+)
2928relogcld 25683 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ)
3029recnd 10934 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ)
3118, 19, 20, 21, 22, 25, 30telfsum2 15445 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) − (log‘1)))
32 log1 25646 . . . . . . . 8 (log‘1) = 0
3332oveq2i 7266 . . . . . . 7 ((log‘(𝑛 + 1)) − (log‘1)) = ((log‘(𝑛 + 1)) − 0)
3423nnrpd 12699 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
3534relogcld 25683 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℝ)
3635recnd 10934 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℂ)
3736subid1d 11251 . . . . . . 7 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − 0) = (log‘(𝑛 + 1)))
3833, 37syl5eq 2791 . . . . . 6 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − (log‘1)) = (log‘(𝑛 + 1)))
3917, 31, 383eqtrd 2782 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1)))
4039oveq2d 7271 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
41 fzfid 13621 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
422nnrecred 11954 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ)
4342recnd 10934 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ)
44 1rp 12663 . . . . . . . . 9 1 ∈ ℝ+
4514rpreccld 12711 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ+)
46 rpaddcl 12681 . . . . . . . . 9 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
4744, 45, 46sylancr 586 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈ ℝ+)
4847relogcld 25683 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
4948recnd 10934 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℂ)
5041, 43, 49fsumsub 15428 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))))
51 oveq2 7263 . . . . . . . . 9 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5251oveq2d 7271 . . . . . . . . . 10 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
5352fveq2d 6760 . . . . . . . . 9 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
5451, 53oveq12d 7273 . . . . . . . 8 (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
55 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
56 ovex 7288 . . . . . . . 8 ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ V
5754, 55, 56fvmpt 6857 . . . . . . 7 (𝑚 ∈ ℕ → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
582, 57syl 17 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
59 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6059, 24eleqtrdi 2849 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
6142, 48resubcld 11333 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℝ)
6261recnd 10934 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℂ)
6358, 60, 62fsumser 15370 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6450, 63eqtr3d 2780 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6540, 64eqtr3d 2780 . . 3 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛))
6665mpteq2ia 5173 . 2 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
67 emcl.2 . 2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
68 1z 12280 . . . . 5 1 ∈ ℤ
69 seqfn 13661 . . . . 5 (1 ∈ ℤ → seq1( + , 𝑇) Fn (ℤ‘1))
7068, 69ax-mp 5 . . . 4 seq1( + , 𝑇) Fn (ℤ‘1)
7124fneq2i 6515 . . . 4 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) Fn (ℤ‘1))
7270, 71mpbir 230 . . 3 seq1( + , 𝑇) Fn ℕ
73 dffn5 6810 . . 3 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)))
7472, 73mpbi 229 . 2 seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
7566, 67, 743eqtr4i 2776 1 𝐺 = seq1( + , 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cmpt 5153   Fn wfn 6413  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  seqcseq 13649  Σcsu 15325  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  emcllem6  26055
  Copyright terms: Public domain W3C validator