| Step | Hyp | Ref
| Expression |
| 1 | | elfznn 13593 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ) |
| 2 | 1 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ) |
| 3 | 2 | nncnd 12282 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ) |
| 4 | | 1cnd 11256 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ) |
| 5 | 2 | nnne0d 12316 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0) |
| 6 | 3, 4, 3, 5 | divdird 12081 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚))) |
| 7 | 3, 5 | dividd 12041 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1) |
| 8 | 7 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚))) |
| 9 | 6, 8 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚))) |
| 10 | 9 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚)))) |
| 11 | | peano2nn 12278 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
| 12 | 2, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ) |
| 13 | 12 | nnrpd 13075 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈
ℝ+) |
| 14 | 2 | nnrpd 13075 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+) |
| 15 | 13, 14 | relogdivd 26668 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚))) |
| 16 | 10, 15 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚))) |
| 17 | 16 | sumeq2dv 15738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚))) |
| 18 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚)) |
| 19 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1))) |
| 20 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 1 → (log‘𝑥) =
(log‘1)) |
| 21 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1))) |
| 22 | | nnz 12634 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 23 | | peano2nn 12278 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 24 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 25 | 23, 24 | eleqtrdi 2851 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
(ℤ≥‘1)) |
| 26 | | elfznn 13593 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ) |
| 27 | 26 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ) |
| 28 | 27 | nnrpd 13075 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+) |
| 29 | 28 | relogcld 26665 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ) |
| 30 | 29 | recnd 11289 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ) |
| 31 | 18, 19, 20, 21, 22, 25, 30 | telfsum2 15841 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) −
(log‘1))) |
| 32 | | log1 26627 |
. . . . . . . 8
⊢
(log‘1) = 0 |
| 33 | 32 | oveq2i 7442 |
. . . . . . 7
⊢
((log‘(𝑛 + 1))
− (log‘1)) = ((log‘(𝑛 + 1)) − 0) |
| 34 | 23 | nnrpd 13075 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ+) |
| 35 | 34 | relogcld 26665 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(log‘(𝑛 + 1)) ∈
ℝ) |
| 36 | 35 | recnd 11289 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(log‘(𝑛 + 1)) ∈
ℂ) |
| 37 | 36 | subid1d 11609 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((log‘(𝑛 + 1))
− 0) = (log‘(𝑛
+ 1))) |
| 38 | 33, 37 | eqtrid 2789 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
((log‘(𝑛 + 1))
− (log‘1)) = (log‘(𝑛 + 1))) |
| 39 | 17, 31, 38 | 3eqtrd 2781 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1))) |
| 40 | 39 | oveq2d 7447 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
| 41 | | fzfid 14014 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
(1...𝑛) ∈
Fin) |
| 42 | 2 | nnrecred 12317 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ) |
| 43 | 42 | recnd 11289 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ) |
| 44 | | 1rp 13038 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 45 | 14 | rpreccld 13087 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈
ℝ+) |
| 46 | | rpaddcl 13057 |
. . . . . . . . 9
⊢ ((1
∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1
/ 𝑚)) ∈
ℝ+) |
| 47 | 44, 45, 46 | sylancr 587 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈
ℝ+) |
| 48 | 47 | relogcld 26665 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈
ℝ) |
| 49 | 48 | recnd 11289 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈
ℂ) |
| 50 | 41, 43, 49 | fsumsub 15824 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))))) |
| 51 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚)) |
| 52 | 51 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚))) |
| 53 | 52 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚)))) |
| 54 | 51, 53 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
| 55 | | emcl.4 |
. . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 /
𝑛))))) |
| 56 | | ovex 7464 |
. . . . . . . 8
⊢ ((1 /
𝑚) − (log‘(1 +
(1 / 𝑚)))) ∈
V |
| 57 | 54, 55, 56 | fvmpt 7016 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
| 58 | 2, 57 | syl 17 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇‘𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚))))) |
| 59 | | id 22 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
| 60 | 59, 24 | eleqtrdi 2851 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
| 61 | 42, 48 | resubcld 11691 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈
ℝ) |
| 62 | 61 | recnd 11289 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈
ℂ) |
| 63 | 58, 60, 62 | fsumser 15766 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛)) |
| 64 | 50, 63 | eqtr3d 2779 |
. . . 4
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛)) |
| 65 | 40, 64 | eqtr3d 2779 |
. . 3
⊢ (𝑛 ∈ ℕ →
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛)) |
| 66 | 65 | mpteq2ia 5245 |
. 2
⊢ (𝑛 ∈ ℕ ↦
(Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)) |
| 67 | | emcl.2 |
. 2
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) |
| 68 | | 1z 12647 |
. . . . 5
⊢ 1 ∈
ℤ |
| 69 | | seqfn 14054 |
. . . . 5
⊢ (1 ∈
ℤ → seq1( + , 𝑇)
Fn (ℤ≥‘1)) |
| 70 | 68, 69 | ax-mp 5 |
. . . 4
⊢ seq1( + ,
𝑇) Fn
(ℤ≥‘1) |
| 71 | 24 | fneq2i 6666 |
. . . 4
⊢ (seq1( +
, 𝑇) Fn ℕ ↔
seq1( + , 𝑇) Fn
(ℤ≥‘1)) |
| 72 | 70, 71 | mpbir 231 |
. . 3
⊢ seq1( + ,
𝑇) Fn
ℕ |
| 73 | | dffn5 6967 |
. . 3
⊢ (seq1( +
, 𝑇) Fn ℕ ↔
seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( +
, 𝑇)‘𝑛))) |
| 74 | 72, 73 | mpbi 230 |
. 2
⊢ seq1( + ,
𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)) |
| 75 | 66, 67, 74 | 3eqtr4i 2775 |
1
⊢ 𝐺 = seq1( + , 𝑇) |