MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   GIF version

Theorem emcllem5 26349
Description: Lemma for emcl 26352. The partial sums of the series 𝑇, which is used in Definition df-em 26342, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem5 𝐺 = seq1( + , 𝑇)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn 13470 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
21adantl 482 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ)
32nncnd 12169 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ)
4 1cnd 11150 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ)
52nnne0d 12203 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0)
63, 4, 3, 5divdird 11969 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
73, 5dividd 11929 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1)
87oveq1d 7372 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
96, 8eqtrd 2776 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚)))
109fveq2d 6846 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚))))
11 peano2nn 12165 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
122, 11syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ)
1312nnrpd 12955 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℝ+)
142nnrpd 12955 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+)
1513, 14relogdivd 25981 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1610, 15eqtr3d 2778 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1716sumeq2dv 15588 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)))
18 fveq2 6842 . . . . . . 7 (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚))
19 fveq2 6842 . . . . . . 7 (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1)))
20 fveq2 6842 . . . . . . 7 (𝑥 = 1 → (log‘𝑥) = (log‘1))
21 fveq2 6842 . . . . . . 7 (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1)))
22 nnz 12520 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
23 peano2nn 12165 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
24 nnuz 12806 . . . . . . . 8 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2848 . . . . . . 7 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
26 elfznn 13470 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
2726adantl 482 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
2827nnrpd 12955 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+)
2928relogcld 25978 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ)
3029recnd 11183 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ)
3118, 19, 20, 21, 22, 25, 30telfsum2 15690 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) − (log‘1)))
32 log1 25941 . . . . . . . 8 (log‘1) = 0
3332oveq2i 7368 . . . . . . 7 ((log‘(𝑛 + 1)) − (log‘1)) = ((log‘(𝑛 + 1)) − 0)
3423nnrpd 12955 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
3534relogcld 25978 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℝ)
3635recnd 11183 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℂ)
3736subid1d 11501 . . . . . . 7 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − 0) = (log‘(𝑛 + 1)))
3833, 37eqtrid 2788 . . . . . 6 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − (log‘1)) = (log‘(𝑛 + 1)))
3917, 31, 383eqtrd 2780 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1)))
4039oveq2d 7373 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
41 fzfid 13878 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
422nnrecred 12204 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ)
4342recnd 11183 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ)
44 1rp 12919 . . . . . . . . 9 1 ∈ ℝ+
4514rpreccld 12967 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ+)
46 rpaddcl 12937 . . . . . . . . 9 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
4744, 45, 46sylancr 587 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈ ℝ+)
4847relogcld 25978 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
4948recnd 11183 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℂ)
5041, 43, 49fsumsub 15673 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))))
51 oveq2 7365 . . . . . . . . 9 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5251oveq2d 7373 . . . . . . . . . 10 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
5352fveq2d 6846 . . . . . . . . 9 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
5451, 53oveq12d 7375 . . . . . . . 8 (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
55 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
56 ovex 7390 . . . . . . . 8 ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ V
5754, 55, 56fvmpt 6948 . . . . . . 7 (𝑚 ∈ ℕ → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
582, 57syl 17 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
59 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6059, 24eleqtrdi 2848 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
6142, 48resubcld 11583 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℝ)
6261recnd 11183 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℂ)
6358, 60, 62fsumser 15615 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6450, 63eqtr3d 2778 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6540, 64eqtr3d 2778 . . 3 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛))
6665mpteq2ia 5208 . 2 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
67 emcl.2 . 2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
68 1z 12533 . . . . 5 1 ∈ ℤ
69 seqfn 13918 . . . . 5 (1 ∈ ℤ → seq1( + , 𝑇) Fn (ℤ‘1))
7068, 69ax-mp 5 . . . 4 seq1( + , 𝑇) Fn (ℤ‘1)
7124fneq2i 6600 . . . 4 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) Fn (ℤ‘1))
7270, 71mpbir 230 . . 3 seq1( + , 𝑇) Fn ℕ
73 dffn5 6901 . . 3 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)))
7472, 73mpbi 229 . 2 seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
7566, 67, 743eqtr4i 2774 1 𝐺 = seq1( + , 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  cmpt 5188   Fn wfn 6491  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385   / cdiv 11812  cn 12153  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  seqcseq 13906  Σcsu 15570  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  emcllem6  26350
  Copyright terms: Public domain W3C validator