Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ser0f | Structured version Visualization version GIF version |
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
Ref | Expression |
---|---|
ser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
ser0f | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ser0.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | ser0 13462 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0) |
3 | c0ex 10663 | . . . . 5 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 6955 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) = 0) |
5 | 2, 4 | eqtr4d 2797 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)) |
6 | 5 | rgen 3081 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘) |
7 | seqfn 13420 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) | |
8 | 1 | fneq2i 6430 | . . . 4 ⊢ (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) |
9 | 7, 8 | sylibr 237 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍) |
10 | 3 | fconst 6548 | . . . 4 ⊢ (𝑍 × {0}):𝑍⟶{0} |
11 | ffn 6496 | . . . 4 ⊢ ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝑍 × {0}) Fn 𝑍 |
13 | eqfnfv 6791 | . . 3 ⊢ ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) | |
14 | 9, 12, 13 | sylancl 590 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) |
15 | 6, 14 | mpbiri 261 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {csn 4520 × cxp 5520 Fn wfn 6328 ⟶wf 6329 ‘cfv 6333 0cc0 10565 + caddc 10568 ℤcz 12010 ℤ≥cuz 12272 seqcseq 13408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-n0 11925 df-z 12011 df-uz 12273 df-fz 12930 df-seq 13409 |
This theorem is referenced by: serclim0 14972 ovolctb 24180 |
Copyright terms: Public domain | W3C validator |