![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ser0f | Structured version Visualization version GIF version |
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
Ref | Expression |
---|---|
ser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
ser0f | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ser0.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | ser0 13103 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = 0) |
3 | c0ex 10320 | . . . . 5 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 6696 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) = 0) |
5 | 2, 4 | eqtr4d 2834 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘)) |
6 | 5 | rgen 3101 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘) |
7 | seqfn 13063 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) | |
8 | 1 | fneq2i 6195 | . . . 4 ⊢ (seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0})) Fn (ℤ≥‘𝑀)) |
9 | 7, 8 | sylibr 226 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) Fn 𝑍) |
10 | 3 | fconst 6304 | . . . 4 ⊢ (𝑍 × {0}):𝑍⟶{0} |
11 | ffn 6254 | . . . 4 ⊢ ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝑍 × {0}) Fn 𝑍 |
13 | eqfnfv 6535 | . . 3 ⊢ ((seq𝑀( + , (𝑍 × {0})) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) | |
14 | 9, 12, 13 | sylancl 581 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}))‘𝑘) = ((𝑍 × {0})‘𝑘))) |
15 | 6, 14 | mpbiri 250 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∀wral 3087 {csn 4366 × cxp 5308 Fn wfn 6094 ⟶wf 6095 ‘cfv 6099 0cc0 10222 + caddc 10225 ℤcz 11662 ℤ≥cuz 11926 seqcseq 13051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-seq 13052 |
This theorem is referenced by: serclim0 14646 ovolctb 23595 |
Copyright terms: Public domain | W3C validator |