Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ssc | Structured version Visualization version GIF version |
Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.) |
Ref | Expression |
---|---|
0ssc | ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ (Base‘𝐶) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶)) |
3 | ral0 4440 | . . 3 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
5 | f0 6639 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
6 | ffn 6584 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
8 | xp0 6050 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
9 | 8 | fneq2i 6515 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
12 | eqid 2738 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
13 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
14 | 12, 13 | homffn 17319 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
15 | 14 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
16 | fvexd 6771 | . . 3 ⊢ (𝐶 ∈ Cat → (Base‘𝐶) ∈ V) | |
17 | 11, 15, 16 | isssc 17449 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ⊆cat (Homf ‘𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)))) |
18 | 2, 4, 17 | mpbir2and 709 | 1 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Catccat 17290 Homf chomf 17292 ⊆cat cssc 17436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-ixp 8644 df-homf 17296 df-ssc 17439 |
This theorem is referenced by: 0subcat 17469 |
Copyright terms: Public domain | W3C validator |