| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ssc | Structured version Visualization version GIF version | ||
| Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0ssc | ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ (Base‘𝐶) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶)) |
| 3 | ral0 4464 | . . 3 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
| 5 | f0 6705 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
| 6 | ffn 6652 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
| 8 | xp0 6107 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 9 | 8 | fneq2i 6580 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
| 12 | eqid 2729 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 13 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 14 | 12, 13 | homffn 17599 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 16 | fvexd 6837 | . . 3 ⊢ (𝐶 ∈ Cat → (Base‘𝐶) ∈ V) | |
| 17 | 11, 15, 16 | isssc 17727 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ⊆cat (Homf ‘𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)))) |
| 18 | 2, 4, 17 | mpbir2and 713 | 1 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 × cxp 5617 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Catccat 17570 Homf chomf 17572 ⊆cat cssc 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-ixp 8825 df-homf 17576 df-ssc 17717 |
| This theorem is referenced by: 0subcat 17745 |
| Copyright terms: Public domain | W3C validator |