MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ssc Structured version   Visualization version   GIF version

Theorem 0ssc 17855
Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0ssc (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))

Proof of Theorem 0ssc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4380 . . 3 ∅ ⊆ (Base‘𝐶)
21a1i 11 . 2 (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶))
3 ral0 4493 . . 3 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦)
43a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))
5 f0 6764 . . . . . 6 ∅:∅⟶∅
6 ffn 6711 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
75, 6ax-mp 5 . . . . 5 ∅ Fn ∅
8 xp0 6152 . . . . . 6 (∅ × ∅) = ∅
98fneq2i 6641 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
107, 9mpbir 231 . . . 4 ∅ Fn (∅ × ∅)
1110a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
12 eqid 2736 . . . . 5 (Homf𝐶) = (Homf𝐶)
13 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
1412, 13homffn 17710 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
1514a1i 11 . . 3 (𝐶 ∈ Cat → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
16 fvexd 6896 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) ∈ V)
1711, 15, 16isssc 17838 . 2 (𝐶 ∈ Cat → (∅ ⊆cat (Homf𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))))
182, 4, 17mpbir2and 713 1 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3052  Vcvv 3464  wss 3931  c0 4313   class class class wbr 5124   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  Catccat 17681  Homf chomf 17683  cat cssc 17825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-ixp 8917  df-homf 17687  df-ssc 17828
This theorem is referenced by:  0subcat  17856
  Copyright terms: Public domain W3C validator