MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ssc Structured version   Visualization version   GIF version

Theorem 0ssc 17550
Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0ssc (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))

Proof of Theorem 0ssc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4336 . . 3 ∅ ⊆ (Base‘𝐶)
21a1i 11 . 2 (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶))
3 ral0 4449 . . 3 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦)
43a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))
5 f0 6653 . . . . . 6 ∅:∅⟶∅
6 ffn 6598 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
75, 6ax-mp 5 . . . . 5 ∅ Fn ∅
8 xp0 6060 . . . . . 6 (∅ × ∅) = ∅
98fneq2i 6529 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
107, 9mpbir 230 . . . 4 ∅ Fn (∅ × ∅)
1110a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
12 eqid 2740 . . . . 5 (Homf𝐶) = (Homf𝐶)
13 eqid 2740 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
1412, 13homffn 17400 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
1514a1i 11 . . 3 (𝐶 ∈ Cat → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
16 fvexd 6786 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) ∈ V)
1711, 15, 16isssc 17530 . 2 (𝐶 ∈ Cat → (∅ ⊆cat (Homf𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))))
182, 4, 17mpbir2and 710 1 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wral 3066  Vcvv 3431  wss 3892  c0 4262   class class class wbr 5079   × cxp 5588   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  Basecbs 16910  Catccat 17371  Homf chomf 17373  cat cssc 17517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-ixp 8669  df-homf 17377  df-ssc 17520
This theorem is referenced by:  0subcat  17551
  Copyright terms: Public domain W3C validator