| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ssc | Structured version Visualization version GIF version | ||
| Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0ssc | ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ (Base‘𝐶) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶)) |
| 3 | ral0 4460 | . . 3 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
| 5 | f0 6704 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
| 6 | ffn 6651 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
| 8 | xp0 5714 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 9 | 8 | fneq2i 6579 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
| 12 | eqid 2731 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 13 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 14 | 12, 13 | homffn 17599 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 16 | fvexd 6837 | . . 3 ⊢ (𝐶 ∈ Cat → (Base‘𝐶) ∈ V) | |
| 17 | 11, 15, 16 | isssc 17727 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ⊆cat (Homf ‘𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)))) |
| 18 | 2, 4, 17 | mpbir2and 713 | 1 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 × cxp 5612 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Catccat 17570 Homf chomf 17572 ⊆cat cssc 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-ixp 8822 df-homf 17576 df-ssc 17717 |
| This theorem is referenced by: 0subcat 17745 |
| Copyright terms: Public domain | W3C validator |