MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ssc Structured version   Visualization version   GIF version

Theorem 0ssc 17297
Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0ssc (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))

Proof of Theorem 0ssc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4297 . . 3 ∅ ⊆ (Base‘𝐶)
21a1i 11 . 2 (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶))
3 ral0 4410 . . 3 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦)
43a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))
5 f0 6578 . . . . . 6 ∅:∅⟶∅
6 ffn 6523 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
75, 6ax-mp 5 . . . . 5 ∅ Fn ∅
8 xp0 6001 . . . . . 6 (∅ × ∅) = ∅
98fneq2i 6455 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
107, 9mpbir 234 . . . 4 ∅ Fn (∅ × ∅)
1110a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
12 eqid 2736 . . . . 5 (Homf𝐶) = (Homf𝐶)
13 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
1412, 13homffn 17150 . . . 4 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
1514a1i 11 . . 3 (𝐶 ∈ Cat → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
16 fvexd 6710 . . 3 (𝐶 ∈ Cat → (Base‘𝐶) ∈ V)
1711, 15, 16isssc 17279 . 2 (𝐶 ∈ Cat → (∅ ⊆cat (Homf𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑦) ⊆ (𝑥(Homf𝐶)𝑦))))
182, 4, 17mpbir2and 713 1 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  wral 3051  Vcvv 3398  wss 3853  c0 4223   class class class wbr 5039   × cxp 5534   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  Basecbs 16666  Catccat 17121  Homf chomf 17123  cat cssc 17266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-ixp 8557  df-homf 17127  df-ssc 17269
This theorem is referenced by:  0subcat  17298
  Copyright terms: Public domain W3C validator