![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ssc | Structured version Visualization version GIF version |
Description: For any category πΆ, the empty set is a subcategory subset of πΆ. (Contributed by AV, 23-Apr-2020.) |
Ref | Expression |
---|---|
0ssc | β’ (πΆ β Cat β β βcat (Homf βπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4395 | . . 3 β’ β β (BaseβπΆ) | |
2 | 1 | a1i 11 | . 2 β’ (πΆ β Cat β β β (BaseβπΆ)) |
3 | ral0 4511 | . . 3 β’ βπ₯ β β βπ¦ β β (π₯β π¦) β (π₯(Homf βπΆ)π¦) | |
4 | 3 | a1i 11 | . 2 β’ (πΆ β Cat β βπ₯ β β βπ¦ β β (π₯β π¦) β (π₯(Homf βπΆ)π¦)) |
5 | f0 6769 | . . . . . 6 β’ β :β βΆβ | |
6 | ffn 6714 | . . . . . 6 β’ (β :β βΆβ β β Fn β ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 β’ β Fn β |
8 | xp0 6154 | . . . . . 6 β’ (β Γ β ) = β | |
9 | 8 | fneq2i 6644 | . . . . 5 β’ (β Fn (β Γ β ) β β Fn β ) |
10 | 7, 9 | mpbir 230 | . . . 4 β’ β Fn (β Γ β ) |
11 | 10 | a1i 11 | . . 3 β’ (πΆ β Cat β β Fn (β Γ β )) |
12 | eqid 2732 | . . . . 5 β’ (Homf βπΆ) = (Homf βπΆ) | |
13 | eqid 2732 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
14 | 12, 13 | homffn 17633 | . . . 4 β’ (Homf βπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ)) |
15 | 14 | a1i 11 | . . 3 β’ (πΆ β Cat β (Homf βπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ))) |
16 | fvexd 6903 | . . 3 β’ (πΆ β Cat β (BaseβπΆ) β V) | |
17 | 11, 15, 16 | isssc 17763 | . 2 β’ (πΆ β Cat β (β βcat (Homf βπΆ) β (β β (BaseβπΆ) β§ βπ₯ β β βπ¦ β β (π₯β π¦) β (π₯(Homf βπΆ)π¦)))) |
18 | 2, 4, 17 | mpbir2and 711 | 1 β’ (πΆ β Cat β β βcat (Homf βπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3947 β c0 4321 class class class wbr 5147 Γ cxp 5673 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 Catccat 17604 Homf chomf 17606 βcat cssc 17750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-ixp 8888 df-homf 17610 df-ssc 17753 |
This theorem is referenced by: 0subcat 17784 |
Copyright terms: Public domain | W3C validator |