| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ssc | Structured version Visualization version GIF version | ||
| Description: For any category 𝐶, the empty set is a subcategory subset of 𝐶. (Contributed by AV, 23-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0ssc | ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4373 | . . 3 ⊢ ∅ ⊆ (Base‘𝐶) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆ (Base‘𝐶)) |
| 3 | ral0 4486 | . . 3 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)) |
| 5 | f0 6755 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
| 6 | ffn 6702 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
| 8 | xp0 6144 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 9 | 8 | fneq2i 6632 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
| 12 | eqid 2734 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 13 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 14 | 12, 13 | homffn 17690 | . . . 4 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 16 | fvexd 6887 | . . 3 ⊢ (𝐶 ∈ Cat → (Base‘𝐶) ∈ V) | |
| 17 | 11, 15, 16 | isssc 17818 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ⊆cat (Homf ‘𝐶) ↔ (∅ ⊆ (Base‘𝐶) ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥∅𝑦) ⊆ (𝑥(Homf ‘𝐶)𝑦)))) |
| 18 | 2, 4, 17 | mpbir2and 713 | 1 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 Vcvv 3457 ⊆ wss 3924 ∅c0 4306 class class class wbr 5116 × cxp 5649 Fn wfn 6522 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Catccat 17661 Homf chomf 17663 ⊆cat cssc 17805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-ixp 8906 df-homf 17667 df-ssc 17808 |
| This theorem is referenced by: 0subcat 17836 |
| Copyright terms: Public domain | W3C validator |