| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0subcat | Structured version Visualization version GIF version | ||
| Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0subcat | ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ssc 17806 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) | |
| 2 | ral0 4479 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧)) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))) |
| 4 | eqid 2730 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 5 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 6 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 7 | id 22 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 8 | f0 6744 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
| 9 | ffn 6691 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
| 11 | 0xp 5740 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
| 12 | 11 | fneq2i 6619 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
| 13 | 10, 12 | mpbir 231 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
| 15 | 4, 5, 6, 7, 14 | issubc2 17805 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))))) |
| 16 | 1, 3, 15 | mpbir2and 713 | 1 ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∅c0 4299 〈cop 4598 class class class wbr 5110 × cxp 5639 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 compcco 17239 Catccat 17632 Idccid 17633 Homf chomf 17634 ⊆cat cssc 17776 Subcatcsubc 17778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-pm 8805 df-ixp 8874 df-homf 17638 df-ssc 17779 df-subc 17781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |