MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subcat Structured version   Visualization version   GIF version

Theorem 0subcat 17856
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0subcat (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))

Proof of Theorem 0subcat
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ssc 17855 . 2 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
2 ral0 4493 . . 3 𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧))
32a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))
4 eqid 2736 . . 3 (Homf𝐶) = (Homf𝐶)
5 eqid 2736 . . 3 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2736 . . 3 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . 3 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 f0 6764 . . . . . 6 ∅:∅⟶∅
9 ffn 6711 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
108, 9ax-mp 5 . . . . 5 ∅ Fn ∅
11 0xp 5758 . . . . . 6 (∅ × ∅) = ∅
1211fneq2i 6641 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
1310, 12mpbir 231 . . . 4 ∅ Fn (∅ × ∅)
1413a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
154, 5, 6, 7, 14issubc2 17854 . 2 (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))))
161, 3, 15mpbir2and 713 1 (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  c0 4313  cop 4612   class class class wbr 5124   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  compcco 17288  Catccat 17681  Idccid 17682  Homf chomf 17683  cat cssc 17825  Subcatcsubc 17827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-pm 8848  df-ixp 8917  df-homf 17687  df-ssc 17828  df-subc 17830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator