Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0subcat | Structured version Visualization version GIF version |
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.) |
Ref | Expression |
---|---|
0subcat | ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ssc 17550 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) | |
2 | ral0 4449 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))) |
4 | eqid 2740 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
5 | eqid 2740 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
6 | eqid 2740 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | id 22 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
8 | f0 6653 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
9 | ffn 6598 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
11 | 0xp 5685 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
12 | 11 | fneq2i 6529 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
13 | 10, 12 | mpbir 230 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
14 | 13 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
15 | 4, 5, 6, 7, 14 | issubc2 17549 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))))) |
16 | 1, 3, 15 | mpbir2and 710 | 1 ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 ∅c0 4262 〈cop 4573 class class class wbr 5079 × cxp 5588 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 compcco 16972 Catccat 17371 Idccid 17372 Homf chomf 17373 ⊆cat cssc 17517 Subcatcsubc 17519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-pm 8601 df-ixp 8669 df-homf 17377 df-ssc 17520 df-subc 17522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |