![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0subcat | Structured version Visualization version GIF version |
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.) |
Ref | Expression |
---|---|
0subcat | ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ssc 17901 | . 2 ⊢ (𝐶 ∈ Cat → ∅ ⊆cat (Homf ‘𝐶)) | |
2 | ral0 4536 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧)) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))) |
4 | eqid 2740 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
5 | eqid 2740 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
6 | eqid 2740 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
7 | id 22 | . . 3 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
8 | f0 6802 | . . . . . 6 ⊢ ∅:∅⟶∅ | |
9 | ffn 6747 | . . . . . 6 ⊢ (∅:∅⟶∅ → ∅ Fn ∅) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ∅ Fn ∅ |
11 | 0xp 5798 | . . . . . 6 ⊢ (∅ × ∅) = ∅ | |
12 | 11 | fneq2i 6677 | . . . . 5 ⊢ (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅) |
13 | 10, 12 | mpbir 231 | . . . 4 ⊢ ∅ Fn (∅ × ∅) |
14 | 13 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ∅ Fn (∅ × ∅)) |
15 | 4, 5, 6, 7, 14 | issubc2 17900 | . 2 ⊢ (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥∅𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥∅𝑦)∀𝑔 ∈ (𝑦∅𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥∅𝑧))))) |
16 | 1, 3, 15 | mpbir2and 712 | 1 ⊢ (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 〈cop 4654 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 compcco 17323 Catccat 17722 Idccid 17723 Homf chomf 17724 ⊆cat cssc 17868 Subcatcsubc 17870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-pm 8887 df-ixp 8956 df-homf 17728 df-ssc 17871 df-subc 17873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |