MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subcat Structured version   Visualization version   GIF version

Theorem 0subcat 17469
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0subcat (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))

Proof of Theorem 0subcat
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ssc 17468 . 2 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
2 ral0 4440 . . 3 𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧))
32a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))
4 eqid 2738 . . 3 (Homf𝐶) = (Homf𝐶)
5 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2738 . . 3 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . 3 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 f0 6639 . . . . . 6 ∅:∅⟶∅
9 ffn 6584 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
108, 9ax-mp 5 . . . . 5 ∅ Fn ∅
11 0xp 5675 . . . . . 6 (∅ × ∅) = ∅
1211fneq2i 6515 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
1310, 12mpbir 230 . . . 4 ∅ Fn (∅ × ∅)
1413a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
154, 5, 6, 7, 14issubc2 17467 . 2 (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))))
161, 3, 15mpbir2and 709 1 (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  c0 4253  cop 4564   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  compcco 16900  Catccat 17290  Idccid 17291  Homf chomf 17292  cat cssc 17436  Subcatcsubc 17438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-pm 8576  df-ixp 8644  df-homf 17296  df-ssc 17439  df-subc 17441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator