MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subcat Structured version   Visualization version   GIF version

Theorem 0subcat 17800
Description: For any category 𝐶, the empty set is a (full) subcategory of 𝐶, see example 4.3(1.a) in [Adamek] p. 48. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0subcat (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))

Proof of Theorem 0subcat
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ssc 17799 . 2 (𝐶 ∈ Cat → ∅ ⊆cat (Homf𝐶))
2 ral0 4476 . . 3 𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧))
32a1i 11 . 2 (𝐶 ∈ Cat → ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))
4 eqid 2729 . . 3 (Homf𝐶) = (Homf𝐶)
5 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
6 eqid 2729 . . 3 (comp‘𝐶) = (comp‘𝐶)
7 id 22 . . 3 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
8 f0 6741 . . . . . 6 ∅:∅⟶∅
9 ffn 6688 . . . . . 6 (∅:∅⟶∅ → ∅ Fn ∅)
108, 9ax-mp 5 . . . . 5 ∅ Fn ∅
11 0xp 5737 . . . . . 6 (∅ × ∅) = ∅
1211fneq2i 6616 . . . . 5 (∅ Fn (∅ × ∅) ↔ ∅ Fn ∅)
1310, 12mpbir 231 . . . 4 ∅ Fn (∅ × ∅)
1413a1i 11 . . 3 (𝐶 ∈ Cat → ∅ Fn (∅ × ∅))
154, 5, 6, 7, 14issubc2 17798 . 2 (𝐶 ∈ Cat → (∅ ∈ (Subcat‘𝐶) ↔ (∅ ⊆cat (Homf𝐶) ∧ ∀𝑥 ∈ ∅ (((Id‘𝐶)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝑧)))))
161, 3, 15mpbir2and 713 1 (𝐶 ∈ Cat → ∅ ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  c0 4296  cop 4595   class class class wbr 5107   × cxp 5636   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  compcco 17232  Catccat 17625  Idccid 17626  Homf chomf 17627  cat cssc 17769  Subcatcsubc 17771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pm 8802  df-ixp 8871  df-homf 17631  df-ssc 17772  df-subc 17774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator