| Step | Hyp | Ref
| Expression |
| 1 | | addcl 11216 |
. . . . 5
⊢ ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ) |
| 2 | 1 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ) |
| 3 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑) |
| 4 | | elfznn 13575 |
. . . . . 6
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
| 5 | 4 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ) |
| 6 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
| 7 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
| 8 | 6, 7 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛)) |
| 9 | 8 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛))) |
| 10 | 9 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛)))) |
| 11 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛)) |
| 12 | 11 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1)) |
| 13 | 12 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1))) |
| 14 | 10, 13 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
| 15 | | gamcvg2.g |
. . . . . . . 8
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
| 16 | | ovex 7443 |
. . . . . . . 8
⊢ ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V |
| 17 | 14, 15, 16 | fvmpt 6991 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
| 18 | 17 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
| 19 | | gamcvg2.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
| 21 | 20 | eldifad 3943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 22 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 23 | 22 | peano2nnd 12262 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
| 24 | 23 | nnrpd 13054 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈
ℝ+) |
| 25 | 22 | nnrpd 13054 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+) |
| 26 | 24, 25 | rpdivcld 13073 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈
ℝ+) |
| 27 | 26 | relogcld 26589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ) |
| 28 | 27 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ) |
| 29 | 21, 28 | mulcld 11260 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ) |
| 30 | 22 | nncnd 12261 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
| 31 | 22 | nnne0d 12295 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
| 32 | 21, 30, 31 | divcld 12022 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ) |
| 33 | | 1cnd 11235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
| 34 | 32, 33 | addcld 11259 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ) |
| 35 | 20, 22 | dmgmdivn0 26995 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0) |
| 36 | 34, 35 | logcld 26536 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) |
| 37 | 29, 36 | subcld 11599 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ) |
| 38 | 18, 37 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
| 39 | 3, 5, 38 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺‘𝑛) ∈ ℂ) |
| 40 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 41 | | nnuz 12900 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 42 | 40, 41 | eleqtrdi 2845 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
| 43 | | efadd 16115 |
. . . . 5
⊢ ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥))) |
| 44 | 43 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥))) |
| 45 | | efsub 16123 |
. . . . . . . 8
⊢ (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) →
(exp‘((𝐴 ·
(log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1))))) |
| 46 | 29, 36, 45 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1))))) |
| 47 | 30, 33 | addcld 11259 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ) |
| 48 | 47, 30, 31 | divcld 12022 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ) |
| 49 | 23 | nnne0d 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0) |
| 50 | 47, 30, 49, 31 | divne0d 12038 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0) |
| 51 | 48, 50, 21 | cxpefd 26678 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛))))) |
| 52 | 51 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴)) |
| 53 | | eflog 26542 |
. . . . . . . . 9
⊢ ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) →
(exp‘(log‘((𝐴 /
𝑛) + 1))) = ((𝐴 / 𝑛) + 1)) |
| 54 | 34, 35, 53 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(exp‘(log‘((𝐴 /
𝑛) + 1))) = ((𝐴 / 𝑛) + 1)) |
| 55 | 52, 54 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
| 56 | 46, 55 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
| 57 | 18 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐺‘𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))) |
| 58 | 8 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴)) |
| 59 | 58, 12 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
| 60 | | gamcvg2.f |
. . . . . . . 8
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) |
| 61 | | ovex 7443 |
. . . . . . . 8
⊢ ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V |
| 62 | 59, 60, 61 | fvmpt 6991 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝐹‘𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
| 63 | 62 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
| 64 | 56, 57, 63 | 3eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐺‘𝑛)) = (𝐹‘𝑛)) |
| 65 | 3, 5, 64 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺‘𝑛)) = (𝐹‘𝑛)) |
| 66 | 2, 39, 42, 44, 65 | seqhomo 14072 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (exp‘(seq1( + ,
𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘)) |
| 67 | 66 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + ,
𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · ,
𝐹)‘𝑘))) |
| 68 | | eff 16102 |
. . . 4
⊢
exp:ℂ⟶ℂ |
| 69 | 68 | a1i 11 |
. . 3
⊢ (𝜑 →
exp:ℂ⟶ℂ) |
| 70 | | 1z 12627 |
. . . . 5
⊢ 1 ∈
ℤ |
| 71 | 70 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℤ) |
| 72 | 41, 71, 38 | serf 14053 |
. . 3
⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
| 73 | | fcompt 7128 |
. . 3
⊢
((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp
∘ seq1( + , 𝐺)) =
(𝑘 ∈ ℕ ↦
(exp‘(seq1( + , 𝐺)‘𝑘)))) |
| 74 | 69, 72, 73 | syl2anc 584 |
. 2
⊢ (𝜑 → (exp ∘ seq1( + ,
𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + ,
𝐺)‘𝑘)))) |
| 75 | | seqfn 14036 |
. . . . 5
⊢ (1 ∈
ℤ → seq1( · , 𝐹) Fn
(ℤ≥‘1)) |
| 76 | 70, 75 | mp1i 13 |
. . . 4
⊢ (𝜑 → seq1( · , 𝐹) Fn
(ℤ≥‘1)) |
| 77 | 41 | fneq2i 6641 |
. . . 4
⊢ (seq1(
· , 𝐹) Fn ℕ
↔ seq1( · , 𝐹)
Fn (ℤ≥‘1)) |
| 78 | 76, 77 | sylibr 234 |
. . 3
⊢ (𝜑 → seq1( · , 𝐹) Fn ℕ) |
| 79 | | dffn5 6942 |
. . 3
⊢ (seq1(
· , 𝐹) Fn ℕ
↔ seq1( · , 𝐹)
= (𝑘 ∈ ℕ ↦
(seq1( · , 𝐹)‘𝑘))) |
| 80 | 78, 79 | sylib 218 |
. 2
⊢ (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · ,
𝐹)‘𝑘))) |
| 81 | 67, 74, 80 | 3eqtr4d 2781 |
1
⊢ (𝜑 → (exp ∘ seq1( + ,
𝐺)) = seq1( · ,
𝐹)) |