MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg2lem Structured version   Visualization version   GIF version

Theorem gamcvg2lem 25644
Description: Lemma for gamcvg2 25645. (Contributed by Mario Carneiro, 10-Jul-2017.)
Hypotheses
Ref Expression
gamcvg2.f 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
gamcvg2.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
gamcvg2.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
gamcvg2lem (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hints:   𝐹(𝑚)   𝐺(𝑚)

Proof of Theorem gamcvg2lem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 10608 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ)
21adantl 485 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ)
3 simpll 766 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
4 elfznn 12931 . . . . . 6 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
54adantl 485 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6 oveq1 7142 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
86, 7oveq12d 7153 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
98fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
109oveq2d 7151 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛))))
11 oveq2 7143 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛))
1211oveq1d 7150 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1))
1312fveq2d 6649 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1)))
1410, 13oveq12d 7153 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
15 gamcvg2.g . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
16 ovex 7168 . . . . . . . 8 ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V
1714, 15, 16fvmpt 6745 . . . . . . 7 (𝑛 ∈ ℕ → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
1817adantl 485 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
19 gamcvg2.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2019adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2120eldifad 3893 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2322peano2nnd 11642 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2423nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2522nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2624, 25rpdivcld 12436 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2726relogcld 25214 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
2827recnd 10658 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
2921, 28mulcld 10650 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3022nncnd 11641 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3122nnne0d 11675 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3221, 30, 31divcld 11405 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ)
33 1cnd 10625 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
3432, 33addcld 10649 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ)
3520, 22dmgmdivn0 25613 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0)
3634, 35logcld 25162 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ)
3729, 36subcld 10986 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ)
3818, 37eqeltrd 2890 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
393, 5, 38syl2anc 587 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺𝑛) ∈ ℂ)
40 simpr 488 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 nnuz 12269 . . . . 5 ℕ = (ℤ‘1)
4240, 41eleqtrdi 2900 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
43 efadd 15439 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
4443adantl 485 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
45 efsub 15445 . . . . . . . 8 (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4629, 36, 45syl2anc 587 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4730, 33addcld 10649 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
4847, 30, 31divcld 11405 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ)
4923nnne0d 11675 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
5047, 30, 49, 31divne0d 11421 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0)
5148, 50, 21cxpefd 25303 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))))
5251eqcomd 2804 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
53 eflog 25168 . . . . . . . . 9 ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5434, 35, 53syl2anc 587 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5552, 54oveq12d 7153 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5646, 55eqtrd 2833 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5718fveq2d 6649 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))))
588oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
5958, 12oveq12d 7153 . . . . . . . 8 (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
60 gamcvg2.f . . . . . . . 8 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
61 ovex 7168 . . . . . . . 8 ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V
6259, 60, 61fvmpt 6745 . . . . . . 7 (𝑛 ∈ ℕ → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6362adantl 485 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6456, 57, 633eqtr4d 2843 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
653, 5, 64syl2anc 587 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
662, 39, 42, 44, 65seqhomo 13413 . . 3 ((𝜑𝑘 ∈ ℕ) → (exp‘(seq1( + , 𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘))
6766mpteq2dva 5125 . 2 (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
68 eff 15427 . . . 4 exp:ℂ⟶ℂ
6968a1i 11 . . 3 (𝜑 → exp:ℂ⟶ℂ)
70 1z 12000 . . . . 5 1 ∈ ℤ
7170a1i 11 . . . 4 (𝜑 → 1 ∈ ℤ)
7241, 71, 38serf 13394 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
73 fcompt 6872 . . 3 ((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
7469, 72, 73syl2anc 587 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
75 seqfn 13376 . . . . 5 (1 ∈ ℤ → seq1( · , 𝐹) Fn (ℤ‘1))
7670, 75mp1i 13 . . . 4 (𝜑 → seq1( · , 𝐹) Fn (ℤ‘1))
7741fneq2i 6421 . . . 4 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) Fn (ℤ‘1))
7876, 77sylibr 237 . . 3 (𝜑 → seq1( · , 𝐹) Fn ℕ)
79 dffn5 6699 . . 3 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8078, 79sylib 221 . 2 (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8167, 74, 803eqtr4d 2843 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  cdif 3878  cmpt 5110  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  expce 15407  logclog 25146  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  gamcvg2  25645
  Copyright terms: Public domain W3C validator