MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg2lem Structured version   Visualization version   GIF version

Theorem gamcvg2lem 26113
Description: Lemma for gamcvg2 26114. (Contributed by Mario Carneiro, 10-Jul-2017.)
Hypotheses
Ref Expression
gamcvg2.f 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
gamcvg2.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
gamcvg2.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
gamcvg2lem (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hints:   𝐹(𝑚)   𝐺(𝑚)

Proof of Theorem gamcvg2lem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 10884 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ)
21adantl 481 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ)
3 simpll 763 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
4 elfznn 13214 . . . . . 6 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
54adantl 481 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6 oveq1 7262 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
86, 7oveq12d 7273 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
98fveq2d 6760 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
109oveq2d 7271 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛))))
11 oveq2 7263 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛))
1211oveq1d 7270 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1))
1312fveq2d 6760 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1)))
1410, 13oveq12d 7273 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
15 gamcvg2.g . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
16 ovex 7288 . . . . . . . 8 ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V
1714, 15, 16fvmpt 6857 . . . . . . 7 (𝑛 ∈ ℕ → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
1817adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
19 gamcvg2.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2019adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2120eldifad 3895 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2322peano2nnd 11920 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2423nnrpd 12699 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2522nnrpd 12699 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2624, 25rpdivcld 12718 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2726relogcld 25683 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
2827recnd 10934 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
2921, 28mulcld 10926 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3022nncnd 11919 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3122nnne0d 11953 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3221, 30, 31divcld 11681 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ)
33 1cnd 10901 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
3432, 33addcld 10925 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ)
3520, 22dmgmdivn0 26082 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0)
3634, 35logcld 25631 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ)
3729, 36subcld 11262 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ)
3818, 37eqeltrd 2839 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
393, 5, 38syl2anc 583 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺𝑛) ∈ ℂ)
40 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
4240, 41eleqtrdi 2849 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
43 efadd 15731 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
4443adantl 481 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
45 efsub 15737 . . . . . . . 8 (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4629, 36, 45syl2anc 583 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4730, 33addcld 10925 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
4847, 30, 31divcld 11681 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ)
4923nnne0d 11953 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
5047, 30, 49, 31divne0d 11697 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0)
5148, 50, 21cxpefd 25772 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))))
5251eqcomd 2744 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
53 eflog 25637 . . . . . . . . 9 ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5434, 35, 53syl2anc 583 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5552, 54oveq12d 7273 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5646, 55eqtrd 2778 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5718fveq2d 6760 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))))
588oveq1d 7270 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
5958, 12oveq12d 7273 . . . . . . . 8 (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
60 gamcvg2.f . . . . . . . 8 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
61 ovex 7288 . . . . . . . 8 ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V
6259, 60, 61fvmpt 6857 . . . . . . 7 (𝑛 ∈ ℕ → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6362adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6456, 57, 633eqtr4d 2788 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
653, 5, 64syl2anc 583 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
662, 39, 42, 44, 65seqhomo 13698 . . 3 ((𝜑𝑘 ∈ ℕ) → (exp‘(seq1( + , 𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘))
6766mpteq2dva 5170 . 2 (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
68 eff 15719 . . . 4 exp:ℂ⟶ℂ
6968a1i 11 . . 3 (𝜑 → exp:ℂ⟶ℂ)
70 1z 12280 . . . . 5 1 ∈ ℤ
7170a1i 11 . . . 4 (𝜑 → 1 ∈ ℤ)
7241, 71, 38serf 13679 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
73 fcompt 6987 . . 3 ((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
7469, 72, 73syl2anc 583 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
75 seqfn 13661 . . . . 5 (1 ∈ ℤ → seq1( · , 𝐹) Fn (ℤ‘1))
7670, 75mp1i 13 . . . 4 (𝜑 → seq1( · , 𝐹) Fn (ℤ‘1))
7741fneq2i 6515 . . . 4 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) Fn (ℤ‘1))
7876, 77sylibr 233 . . 3 (𝜑 → seq1( · , 𝐹) Fn ℕ)
79 dffn5 6810 . . 3 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8078, 79sylib 217 . 2 (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8167, 74, 803eqtr4d 2788 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cmpt 5153  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  expce 15699  logclog 25615  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  gamcvg2  26114
  Copyright terms: Public domain W3C validator