Step | Hyp | Ref
| Expression |
1 | | addcl 10657 |
. . . . 5
⊢ ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ) |
2 | 1 | adantl 485 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ) |
3 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑) |
4 | | elfznn 12985 |
. . . . . 6
⊢ (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ) |
5 | 4 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ) |
6 | | oveq1 7157 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
7 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
8 | 6, 7 | oveq12d 7168 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛)) |
9 | 8 | fveq2d 6662 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛))) |
10 | 9 | oveq2d 7166 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛)))) |
11 | | oveq2 7158 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛)) |
12 | 11 | oveq1d 7165 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1)) |
13 | 12 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1))) |
14 | 10, 13 | oveq12d 7168 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
15 | | gamcvg2.g |
. . . . . . . 8
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
16 | | ovex 7183 |
. . . . . . . 8
⊢ ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V |
17 | 14, 15, 16 | fvmpt 6759 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
18 | 17 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) |
19 | | gamcvg2.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
20 | 19 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
21 | 20 | eldifad 3870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℂ) |
22 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
23 | 22 | peano2nnd 11691 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
24 | 23 | nnrpd 12470 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈
ℝ+) |
25 | 22 | nnrpd 12470 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+) |
26 | 24, 25 | rpdivcld 12489 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈
ℝ+) |
27 | 26 | relogcld 25313 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ) |
28 | 27 | recnd 10707 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ) |
29 | 21, 28 | mulcld 10699 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ) |
30 | 22 | nncnd 11690 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
31 | 22 | nnne0d 11724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
32 | 21, 30, 31 | divcld 11454 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ) |
33 | | 1cnd 10674 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
34 | 32, 33 | addcld 10698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ) |
35 | 20, 22 | dmgmdivn0 25712 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0) |
36 | 34, 35 | logcld 25261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) |
37 | 29, 36 | subcld 11035 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ) |
38 | 18, 37 | eqeltrd 2852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
39 | 3, 5, 38 | syl2anc 587 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺‘𝑛) ∈ ℂ) |
40 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
41 | | nnuz 12321 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
42 | 40, 41 | eleqtrdi 2862 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
43 | | efadd 15495 |
. . . . 5
⊢ ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥))) |
44 | 43 | adantl 485 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥))) |
45 | | efsub 15501 |
. . . . . . . 8
⊢ (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) →
(exp‘((𝐴 ·
(log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1))))) |
46 | 29, 36, 45 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1))))) |
47 | 30, 33 | addcld 10698 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ) |
48 | 47, 30, 31 | divcld 11454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ) |
49 | 23 | nnne0d 11724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0) |
50 | 47, 30, 49, 31 | divne0d 11470 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0) |
51 | 48, 50, 21 | cxpefd 25402 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛))))) |
52 | 51 | eqcomd 2764 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴)) |
53 | | eflog 25267 |
. . . . . . . . 9
⊢ ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) →
(exp‘(log‘((𝐴 /
𝑛) + 1))) = ((𝐴 / 𝑛) + 1)) |
54 | 34, 35, 53 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(exp‘(log‘((𝐴 /
𝑛) + 1))) = ((𝐴 / 𝑛) + 1)) |
55 | 52, 54 | oveq12d 7168 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
56 | 46, 55 | eqtrd 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
57 | 18 | fveq2d 6662 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐺‘𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))) |
58 | 8 | oveq1d 7165 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴)) |
59 | 58, 12 | oveq12d 7168 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
60 | | gamcvg2.f |
. . . . . . . 8
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) |
61 | | ovex 7183 |
. . . . . . . 8
⊢ ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V |
62 | 59, 60, 61 | fvmpt 6759 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (𝐹‘𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
63 | 62 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1))) |
64 | 56, 57, 63 | 3eqtr4d 2803 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (exp‘(𝐺‘𝑛)) = (𝐹‘𝑛)) |
65 | 3, 5, 64 | syl2anc 587 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺‘𝑛)) = (𝐹‘𝑛)) |
66 | 2, 39, 42, 44, 65 | seqhomo 13467 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (exp‘(seq1( + ,
𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘)) |
67 | 66 | mpteq2dva 5127 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + ,
𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · ,
𝐹)‘𝑘))) |
68 | | eff 15483 |
. . . 4
⊢
exp:ℂ⟶ℂ |
69 | 68 | a1i 11 |
. . 3
⊢ (𝜑 →
exp:ℂ⟶ℂ) |
70 | | 1z 12051 |
. . . . 5
⊢ 1 ∈
ℤ |
71 | 70 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℤ) |
72 | 41, 71, 38 | serf 13448 |
. . 3
⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
73 | | fcompt 6886 |
. . 3
⊢
((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp
∘ seq1( + , 𝐺)) =
(𝑘 ∈ ℕ ↦
(exp‘(seq1( + , 𝐺)‘𝑘)))) |
74 | 69, 72, 73 | syl2anc 587 |
. 2
⊢ (𝜑 → (exp ∘ seq1( + ,
𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + ,
𝐺)‘𝑘)))) |
75 | | seqfn 13430 |
. . . . 5
⊢ (1 ∈
ℤ → seq1( · , 𝐹) Fn
(ℤ≥‘1)) |
76 | 70, 75 | mp1i 13 |
. . . 4
⊢ (𝜑 → seq1( · , 𝐹) Fn
(ℤ≥‘1)) |
77 | 41 | fneq2i 6432 |
. . . 4
⊢ (seq1(
· , 𝐹) Fn ℕ
↔ seq1( · , 𝐹)
Fn (ℤ≥‘1)) |
78 | 76, 77 | sylibr 237 |
. . 3
⊢ (𝜑 → seq1( · , 𝐹) Fn ℕ) |
79 | | dffn5 6712 |
. . 3
⊢ (seq1(
· , 𝐹) Fn ℕ
↔ seq1( · , 𝐹)
= (𝑘 ∈ ℕ ↦
(seq1( · , 𝐹)‘𝑘))) |
80 | 78, 79 | sylib 221 |
. 2
⊢ (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · ,
𝐹)‘𝑘))) |
81 | 67, 74, 80 | 3eqtr4d 2803 |
1
⊢ (𝜑 → (exp ∘ seq1( + ,
𝐺)) = seq1( · ,
𝐹)) |