MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg2lem Structured version   Visualization version   GIF version

Theorem gamcvg2lem 26997
Description: Lemma for gamcvg2 26998. (Contributed by Mario Carneiro, 10-Jul-2017.)
Hypotheses
Ref Expression
gamcvg2.f 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
gamcvg2.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
gamcvg2.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
gamcvg2lem (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hints:   𝐹(𝑚)   𝐺(𝑚)

Proof of Theorem gamcvg2lem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 11095 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ)
21adantl 481 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ)
3 simpll 766 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
4 elfznn 13455 . . . . . 6 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
54adantl 481 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6 oveq1 7359 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
86, 7oveq12d 7370 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
98fveq2d 6832 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
109oveq2d 7368 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛))))
11 oveq2 7360 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛))
1211oveq1d 7367 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1))
1312fveq2d 6832 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1)))
1410, 13oveq12d 7370 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
15 gamcvg2.g . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
16 ovex 7385 . . . . . . . 8 ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V
1714, 15, 16fvmpt 6935 . . . . . . 7 (𝑛 ∈ ℕ → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
1817adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
19 gamcvg2.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2019adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2120eldifad 3910 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2322peano2nnd 12149 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2423nnrpd 12934 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2522nnrpd 12934 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2624, 25rpdivcld 12953 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2726relogcld 26560 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
2827recnd 11147 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
2921, 28mulcld 11139 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3022nncnd 12148 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3122nnne0d 12182 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3221, 30, 31divcld 11904 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ)
33 1cnd 11114 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
3432, 33addcld 11138 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ)
3520, 22dmgmdivn0 26966 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0)
3634, 35logcld 26507 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ)
3729, 36subcld 11479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ)
3818, 37eqeltrd 2833 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
393, 5, 38syl2anc 584 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺𝑛) ∈ ℂ)
40 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 nnuz 12777 . . . . 5 ℕ = (ℤ‘1)
4240, 41eleqtrdi 2843 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
43 efadd 16003 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
4443adantl 481 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
45 efsub 16011 . . . . . . . 8 (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4629, 36, 45syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4730, 33addcld 11138 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
4847, 30, 31divcld 11904 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ)
4923nnne0d 12182 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
5047, 30, 49, 31divne0d 11920 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0)
5148, 50, 21cxpefd 26649 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))))
5251eqcomd 2739 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
53 eflog 26513 . . . . . . . . 9 ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5434, 35, 53syl2anc 584 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5552, 54oveq12d 7370 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5646, 55eqtrd 2768 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5718fveq2d 6832 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))))
588oveq1d 7367 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
5958, 12oveq12d 7370 . . . . . . . 8 (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
60 gamcvg2.f . . . . . . . 8 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
61 ovex 7385 . . . . . . . 8 ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V
6259, 60, 61fvmpt 6935 . . . . . . 7 (𝑛 ∈ ℕ → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6362adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6456, 57, 633eqtr4d 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
653, 5, 64syl2anc 584 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
662, 39, 42, 44, 65seqhomo 13958 . . 3 ((𝜑𝑘 ∈ ℕ) → (exp‘(seq1( + , 𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘))
6766mpteq2dva 5186 . 2 (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
68 eff 15990 . . . 4 exp:ℂ⟶ℂ
6968a1i 11 . . 3 (𝜑 → exp:ℂ⟶ℂ)
70 1z 12508 . . . . 5 1 ∈ ℤ
7170a1i 11 . . . 4 (𝜑 → 1 ∈ ℤ)
7241, 71, 38serf 13939 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
73 fcompt 7072 . . 3 ((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
7469, 72, 73syl2anc 584 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
75 seqfn 13922 . . . . 5 (1 ∈ ℤ → seq1( · , 𝐹) Fn (ℤ‘1))
7670, 75mp1i 13 . . . 4 (𝜑 → seq1( · , 𝐹) Fn (ℤ‘1))
7741fneq2i 6584 . . . 4 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) Fn (ℤ‘1))
7876, 77sylibr 234 . . 3 (𝜑 → seq1( · , 𝐹) Fn ℕ)
79 dffn5 6886 . . 3 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8078, 79sylib 218 . 2 (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8167, 74, 803eqtr4d 2778 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  cmpt 5174  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  cn 12132  cz 12475  cuz 12738  ...cfz 13409  seqcseq 13910  expce 15970  logclog 26491  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  gamcvg2  26998
  Copyright terms: Public domain W3C validator