Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamcvglem Structured version   Visualization version   GIF version

Theorem lgamcvglem 25635
 Description: Lemma for lgamf 25637 and lgamcvg 25649. (Contributed by Mario Carneiro, 8-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamcvglem.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
lgamcvglem (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Distinct variable groups:   𝑘,𝑚,𝑟,𝑥,𝐴   𝐺,𝑟   𝜑,𝑘,𝑚,𝑟,𝑥   𝑈,𝑚
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐺(𝑥,𝑘,𝑚)

Proof of Theorem lgamcvglem
Dummy variables 𝑛 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgamucov.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
31, 2lgamucov2 25634 . 2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
4 fveq2 6646 . . . . 5 (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴))
54eleq1d 2874 . . . 4 (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log Γ‘𝐴) ∈ ℂ))
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝑟 ∈ ℕ)
7 fveq2 6646 . . . . . . . . . 10 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 5041 . . . . . . . . 9 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟))
9 fvoveq1 7159 . . . . . . . . . . 11 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 5043 . . . . . . . . . 10 (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3162 . . . . . . . . 9 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 633 . . . . . . . 8 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3439 . . . . . . 7 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
141, 13eqtri 2821 . . . . . 6 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
15 eqid 2798 . . . . . 6 (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
166, 14, 15lgamgulm2 25631 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
1716simpld 498 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝐴𝑈)
195, 17, 18rspcdva 3573 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (log Γ‘𝐴) ∈ ℂ)
20 nnuz 12272 . . . . 5 ℕ = (ℤ‘1)
21 1zzd 12004 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 1 ∈ ℤ)
22 1z 12003 . . . . . . . 8 1 ∈ ℤ
23 seqfn 13379 . . . . . . . 8 (1 ∈ ℤ → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2422, 23ax-mp 5 . . . . . . 7 seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1)
2520fneq2i 6422 . . . . . . 7 (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2624, 25mpbir 234 . . . . . 6 seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ
2716simprd 499 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
28 ulmf2 24989 . . . . . 6 ((seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑m 𝑈))
2926, 27, 28sylancr 590 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑m 𝑈))
30 seqex 13369 . . . . . 6 seq1( + , 𝐺) ∈ V
3130a1i 11 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ∈ V)
32 cnex 10610 . . . . . . . . 9 ℂ ∈ V
331, 32rabex2 5202 . . . . . . . 8 𝑈 ∈ V
3433a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V)
35 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635, 20eleqtrdi 2900 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
37 fz1ssnn 12936 . . . . . . . 8 (1...𝑛) ⊆ ℕ
3837a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
39 ovexd 7171 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
4034, 36, 38, 39seqof2 13427 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
41 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴)
4241oveq1d 7151 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚))))
4341oveq1d 7151 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚))
4443fvoveq1d 7158 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1)))
4542, 44oveq12d 7154 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4645mpteq2dva 5126 . . . . . . . . 9 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))))
47 lgamcvglem.g . . . . . . . . 9 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4846, 47eqtr4di 2851 . . . . . . . 8 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺)
4948seqeq3d 13375 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺))
5049fveq1d 6648 . . . . . 6 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛))
51 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴𝑈)
52 fvexd 6661 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V)
5340, 50, 51, 52fvmptd 6753 . . . . 5 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛))
5420, 21, 29, 18, 31, 53, 27ulmclm 24992 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴))
55 fveq2 6646 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
564, 55oveq12d 7154 . . . . . 6 (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴)))
57 eqid 2798 . . . . . 6 (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))
58 ovex 7169 . . . . . 6 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5956, 57, 58fvmpt 6746 . . . . 5 (𝐴𝑈 → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6018, 59syl 17 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6154, 60breqtrd 5057 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
6219, 61jca 515 . 2 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
633, 62rexlimddv 3250 1 (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3441   ∖ cdif 3878   ⊆ wss 3881   class class class wbr 5031   ↦ cmpt 5111   Fn wfn 6320  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∘f cof 7389   ↑m cmap 8392  ℂcc 10527  1c1 10530   + caddc 10532   · cmul 10534   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℕcn 11628  ℕ0cn0 11888  ℤcz 11972  ℤ≥cuz 12234  ...cfz 12888  seqcseq 13367  abscabs 14588   ⇝ cli 14836  ⇝𝑢culm 24981  logclog 25156  log Γclgam 25611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-dju 9317  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-tan 15420  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-lp 21751  df-perf 21752  df-cn 21842  df-cnp 21843  df-haus 21930  df-cmp 22002  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-limc 24479  df-dv 24480  df-ulm 24982  df-log 25158  df-cxp 25159  df-lgam 25614 This theorem is referenced by:  lgamcl  25636  lgamcvg  25649
 Copyright terms: Public domain W3C validator