| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lgamucov.u | . . 3
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} | 
| 2 |  | lgamucov.a | . . 3
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) | 
| 3 | 1, 2 | lgamucov2 27082 | . 2
⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | 
| 4 |  | fveq2 6906 | . . . . 5
⊢ (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴)) | 
| 5 | 4 | eleq1d 2826 | . . . 4
⊢ (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log
Γ‘𝐴) ∈
ℂ)) | 
| 6 |  | simprl 771 | . . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 𝑟 ∈ ℕ) | 
| 7 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡)) | 
| 8 | 7 | breq1d 5153 | . . . . . . . . 9
⊢ (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟)) | 
| 9 |  | fvoveq1 7454 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘))) | 
| 10 | 9 | breq2d 5155 | . . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))) | 
| 11 | 10 | ralbidv 3178 | . . . . . . . . 9
⊢ (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))) | 
| 12 | 8, 11 | anbi12d 632 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))) | 
| 13 | 12 | cbvrabv 3447 | . . . . . . 7
⊢ {𝑥 ∈ ℂ ∣
((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 /
𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))} | 
| 14 | 1, 13 | eqtri 2765 | . . . . . 6
⊢ 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))} | 
| 15 |  | eqid 2737 | . . . . . 6
⊢ (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) | 
| 16 | 6, 14, 15 | lgamgulm2 27079 | . . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | 
| 17 | 16 | simpld 494 | . . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ) | 
| 18 |  | simprr 773 | . . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 𝐴 ∈ 𝑈) | 
| 19 | 5, 17, 18 | rspcdva 3623 | . . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → (log Γ‘𝐴) ∈
ℂ) | 
| 20 |  | nnuz 12921 | . . . . 5
⊢ ℕ =
(ℤ≥‘1) | 
| 21 |  | 1zzd 12648 | . . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → 1 ∈ ℤ) | 
| 22 |  | 1z 12647 | . . . . . . . 8
⊢ 1 ∈
ℤ | 
| 23 |  | seqfn 14054 | . . . . . . . 8
⊢ (1 ∈
ℤ → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1)) | 
| 24 | 22, 23 | ax-mp 5 | . . . . . . 7
⊢ seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1) | 
| 25 | 20 | fneq2i 6666 | . . . . . . 7
⊢ (seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn
(ℤ≥‘1)) | 
| 26 | 24, 25 | mpbir 231 | . . . . . 6
⊢ seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ | 
| 27 | 16 | simprd 495 | . . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( ∘f + ,
(𝑚 ∈ ℕ ↦
(𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) | 
| 28 |  | ulmf2 26427 | . . . . . 6
⊢ ((seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) +
1))))))(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ
↑m 𝑈)) | 
| 29 | 26, 27, 28 | sylancr 587 | . . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( ∘f + ,
(𝑚 ∈ ℕ ↦
(𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ
↑m 𝑈)) | 
| 30 |  | seqex 14044 | . . . . . 6
⊢ seq1( + ,
𝐺) ∈
V | 
| 31 | 30 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ∈ V) | 
| 32 |  | cnex 11236 | . . . . . . . . 9
⊢ ℂ
∈ V | 
| 33 | 1, 32 | rabex2 5341 | . . . . . . . 8
⊢ 𝑈 ∈ V | 
| 34 | 33 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V) | 
| 35 |  | simpr 484 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) | 
| 36 | 35, 20 | eleqtrdi 2851 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
(ℤ≥‘1)) | 
| 37 |  | fz1ssnn 13595 | . . . . . . . 8
⊢
(1...𝑛) ⊆
ℕ | 
| 38 | 37 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆
ℕ) | 
| 39 |  | ovexd 7466 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ 𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V) | 
| 40 | 34, 36, 38, 39 | seqof2 14101 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧 ∈ 𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛))) | 
| 41 |  | simplr 769 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴) | 
| 42 | 41 | oveq1d 7446 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚)))) | 
| 43 | 41 | oveq1d 7446 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚)) | 
| 44 | 43 | fvoveq1d 7453 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1))) | 
| 45 | 42, 44 | oveq12d 7449 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | 
| 46 | 45 | mpteq2dva 5242 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))) | 
| 47 |  | lgamcvglem.g | . . . . . . . . 9
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | 
| 48 | 46, 47 | eqtr4di 2795 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺) | 
| 49 | 48 | seqeq3d 14050 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺)) | 
| 50 | 49 | fveq1d 6908 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛)) | 
| 51 |  | simplrr 778 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ 𝑈) | 
| 52 |  | fvexd 6921 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V) | 
| 53 | 40, 50, 51, 52 | fvmptd 7023 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1(
∘f + , (𝑚
∈ ℕ ↦ (𝑧
∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛)) | 
| 54 | 20, 21, 29, 18, 31, 53, 27 | ulmclm 26430 | . . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴)) | 
| 55 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴)) | 
| 56 | 4, 55 | oveq12d 7449 | . . . . . 6
⊢ (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴))) | 
| 57 |  | eqid 2737 | . . . . . 6
⊢ (𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) | 
| 58 |  | ovex 7464 | . . . . . 6
⊢ ((log
Γ‘𝐴) +
(log‘𝐴)) ∈
V | 
| 59 | 56, 57, 58 | fvmpt 7016 | . . . . 5
⊢ (𝐴 ∈ 𝑈 → ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴))) | 
| 60 | 18, 59 | syl 17 | . . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ((𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴))) | 
| 61 | 54, 60 | breqtrd 5169 | . . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) | 
| 62 | 19, 61 | jca 511 | . 2
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴 ∈ 𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + ,
𝐺) ⇝ ((log
Γ‘𝐴) +
(log‘𝐴)))) | 
| 63 | 3, 62 | rexlimddv 3161 | 1
⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + ,
𝐺) ⇝ ((log
Γ‘𝐴) +
(log‘𝐴)))) |