MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamcvglem Structured version   Visualization version   GIF version

Theorem lgamcvglem 25619
Description: Lemma for lgamf 25621 and lgamcvg 25633. (Contributed by Mario Carneiro, 8-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamcvglem.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
lgamcvglem (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Distinct variable groups:   𝑘,𝑚,𝑟,𝑥,𝐴   𝐺,𝑟   𝜑,𝑘,𝑚,𝑟,𝑥   𝑈,𝑚
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐺(𝑥,𝑘,𝑚)

Proof of Theorem lgamcvglem
Dummy variables 𝑛 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgamucov.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
31, 2lgamucov2 25618 . 2 (𝜑 → ∃𝑟 ∈ ℕ 𝐴𝑈)
4 fveq2 6672 . . . . 5 (𝑧 = 𝐴 → (log Γ‘𝑧) = (log Γ‘𝐴))
54eleq1d 2899 . . . 4 (𝑧 = 𝐴 → ((log Γ‘𝑧) ∈ ℂ ↔ (log Γ‘𝐴) ∈ ℂ))
6 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝑟 ∈ ℕ)
7 fveq2 6672 . . . . . . . . . 10 (𝑥 = 𝑡 → (abs‘𝑥) = (abs‘𝑡))
87breq1d 5078 . . . . . . . . 9 (𝑥 = 𝑡 → ((abs‘𝑥) ≤ 𝑟 ↔ (abs‘𝑡) ≤ 𝑟))
9 fvoveq1 7181 . . . . . . . . . . 11 (𝑥 = 𝑡 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑡 + 𝑘)))
109breq2d 5080 . . . . . . . . . 10 (𝑥 = 𝑡 → ((1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
1110ralbidv 3199 . . . . . . . . 9 (𝑥 = 𝑡 → (∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘))))
128, 11anbi12d 632 . . . . . . . 8 (𝑥 = 𝑡 → (((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))))
1312cbvrabv 3493 . . . . . . 7 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
141, 13eqtri 2846 . . . . . 6 𝑈 = {𝑡 ∈ ℂ ∣ ((abs‘𝑡) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑡 + 𝑘)))}
15 eqid 2823 . . . . . 6 (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
166, 14, 15lgamgulm2 25615 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))))
1716simpld 497 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ∀𝑧𝑈 (log Γ‘𝑧) ∈ ℂ)
18 simprr 771 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 𝐴𝑈)
195, 17, 18rspcdva 3627 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → (log Γ‘𝐴) ∈ ℂ)
20 nnuz 12284 . . . . 5 ℕ = (ℤ‘1)
21 1zzd 12016 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → 1 ∈ ℤ)
22 1z 12015 . . . . . . . 8 1 ∈ ℤ
23 seqfn 13384 . . . . . . . 8 (1 ∈ ℤ → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2422, 23ax-mp 5 . . . . . . 7 seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1)
2520fneq2i 6453 . . . . . . 7 (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ↔ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn (ℤ‘1))
2624, 25mpbir 233 . . . . . 6 seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ
2716simprd 498 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))
28 ulmf2 24974 . . . . . 6 ((seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))) Fn ℕ ∧ seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))(⇝𝑢𝑈)(𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑m 𝑈))
2926, 27, 28sylancr 589 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))):ℕ⟶(ℂ ↑m 𝑈))
30 seqex 13374 . . . . . 6 seq1( + , 𝐺) ∈ V
3130a1i 11 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ∈ V)
32 cnex 10620 . . . . . . . . 9 ℂ ∈ V
331, 32rabex2 5239 . . . . . . . 8 𝑈 ∈ V
3433a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑈 ∈ V)
35 simpr 487 . . . . . . . 8 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
3635, 20eleqtrdi 2925 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
37 fz1ssnn 12941 . . . . . . . 8 (1...𝑛) ⊆ ℕ
3837a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
39 ovexd 7193 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℕ ∧ 𝑧𝑈)) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ V)
4034, 36, 38, 39seqof2 13431 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛) = (𝑧𝑈 ↦ (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛)))
41 simplr 767 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → 𝑧 = 𝐴)
4241oveq1d 7173 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑚 + 1) / 𝑚))))
4341oveq1d 7173 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (𝑧 / 𝑚) = (𝐴 / 𝑚))
4443fvoveq1d 7180 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → (log‘((𝑧 / 𝑚) + 1)) = (log‘((𝐴 / 𝑚) + 1)))
4542, 44oveq12d 7176 . . . . . . . . . 10 (((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) ∧ 𝑚 ∈ ℕ) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4645mpteq2dva 5163 . . . . . . . . 9 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))))
47 lgamcvglem.g . . . . . . . . 9 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
4846, 47syl6eqr 2876 . . . . . . . 8 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) = 𝐺)
4948seqeq3d 13380 . . . . . . 7 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) = seq1( + , 𝐺))
5049fveq1d 6674 . . . . . 6 ((((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 = 𝐴) → (seq1( + , (𝑚 ∈ ℕ ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))‘𝑛) = (seq1( + , 𝐺)‘𝑛))
51 simplrr 776 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → 𝐴𝑈)
52 fvexd 6687 . . . . . 6 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) ∈ V)
5340, 50, 51, 52fvmptd 6777 . . . . 5 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) ∧ 𝑛 ∈ ℕ) → ((seq1( ∘f + , (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))))‘𝑛)‘𝐴) = (seq1( + , 𝐺)‘𝑛))
5420, 21, 29, 18, 31, 53, 27ulmclm 24977 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴))
55 fveq2 6672 . . . . . . 7 (𝑧 = 𝐴 → (log‘𝑧) = (log‘𝐴))
564, 55oveq12d 7176 . . . . . 6 (𝑧 = 𝐴 → ((log Γ‘𝑧) + (log‘𝑧)) = ((log Γ‘𝐴) + (log‘𝐴)))
57 eqid 2823 . . . . . 6 (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))) = (𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))
58 ovex 7191 . . . . . 6 ((log Γ‘𝐴) + (log‘𝐴)) ∈ V
5956, 57, 58fvmpt 6770 . . . . 5 (𝐴𝑈 → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6018, 59syl 17 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((𝑧𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧)))‘𝐴) = ((log Γ‘𝐴) + (log‘𝐴)))
6154, 60breqtrd 5094 . . 3 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
6219, 61jca 514 . 2 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ 𝐴𝑈)) → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
633, 62rexlimddv 3293 1 (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  wss 3938   class class class wbr 5068  cmpt 5148   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  m cmap 8408  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  abscabs 14595  cli 14843  𝑢culm 24966  logclog 25140  log Γclgam 25595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-ulm 24967  df-log 25142  df-cxp 25143  df-lgam 25598
This theorem is referenced by:  lgamcl  25620  lgamcvg  25633
  Copyright terms: Public domain W3C validator