Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem11 Structured version   Visualization version   GIF version

Theorem knoppcnlem11 32815
Description: Lemma for knoppcn 32816. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem11.n (𝜑𝑁 ∈ ℕ)
knoppcnlem11.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem11 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem11
Dummy variables 𝑤 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem11.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem11.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem11.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43adantr 468 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
5 knoppcnlem11.1 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65adantr 468 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
7 simpr 473 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
81, 2, 4, 6, 7knoppcnlem7 32811 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)))
9 eqidd 2814 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) = ((𝐹𝑤)‘𝑙))
10 simplr 776 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ ℕ0)
11 elnn0uz 11946 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
1210, 11sylib 209 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ (ℤ‘0))
134ad2antrr 708 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
146ad2antrr 708 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
15 simplr 776 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑤 ∈ ℝ)
16 elfzuz 12564 . . . . . . . . . . . 12 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ (ℤ‘0))
17 nn0uz 11943 . . . . . . . . . . . 12 0 = (ℤ‘0)
1816, 17syl6eleqr 2903 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
1918adantl 469 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
201, 2, 13, 14, 15, 19knoppcnlem3 32807 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℝ)
2120recnd 10356 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℂ)
229, 12, 21fsumser 14687 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙) = (seq0( + , (𝐹𝑤))‘𝑘))
2322eqcomd 2819 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( + , (𝐹𝑤))‘𝑘) = Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙))
2423mpteq2dva 4945 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
258, 24eqtrd 2847 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
26 eqid 2813 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
27 retopon 22784 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
29 fzfid 12999 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
304adantr 468 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
316adantr 468 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
3218adantl 469 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
331, 2, 30, 31, 32knoppcnlem10 32814 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
3426, 28, 29, 33fsumcn 22890 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
35 ax-resscn 10281 . . . . . . 7 ℝ ⊆ ℂ
36 ssid 3827 . . . . . . 7 ℂ ⊆ ℂ
3735, 36pm3.2i 458 . . . . . 6 (ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ)
3826tgioo2 22823 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3926cnfldtopon 22803 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4039toponrestid 20943 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4126, 38, 40cncfcn 22929 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
4237, 41ax-mp 5 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
4334, 42syl6eleqr 2903 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ (ℝ–cn→ℂ))
4425, 43eqeltrd 2892 . . 3 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) ∈ (ℝ–cn→ℂ))
4544fmpttd 6610 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
46 0z 11657 . . . . . 6 0 ∈ ℤ
47 seqfn 13039 . . . . . 6 (0 ∈ ℤ → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
4846, 47ax-mp 5 . . . . 5 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0)
4917fneq2i 6200 . . . . 5 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
5048, 49mpbir 222 . . . 4 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0
51 dffn5 6465 . . . 4 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)))
5250, 51mpbi 221 . . 3 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘))
5352feq1i 6250 . 2 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
5445, 53sylibr 225 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wss 3776  cmpt 4930  ran crn 5319   Fn wfn 6099  wf 6100  cfv 6104  (class class class)co 6877  𝑓 cof 7128  cc 10222  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229  cmin 10554   / cdiv 10972  cn 11308  2c2 11359  0cn0 11562  cz 11646  cuz 11907  (,)cioo 12396  ...cfz 12552  cfl 12818  seqcseq 13027  cexp 13086  abscabs 14200  Σcsu 14642  TopOpenctopn 16290  topGenctg 16306  fldccnfld 19957  TopOnctopon 20932   Cn ccn 21246  cnccncf 22896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-q 12011  df-rp 12050  df-xneg 12165  df-xadd 12166  df-xmul 12167  df-ioo 12400  df-icc 12403  df-fz 12553  df-fzo 12693  df-fl 12820  df-seq 13028  df-exp 13087  df-hash 13341  df-cj 14065  df-re 14066  df-im 14067  df-sqrt 14201  df-abs 14202  df-clim 14445  df-sum 14643  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-starv 16171  df-sca 16172  df-vsca 16173  df-ip 16174  df-tset 16175  df-ple 16176  df-ds 16178  df-unif 16179  df-hom 16180  df-cco 16181  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17954  df-cmn 18399  df-psmet 19949  df-xmet 19950  df-met 19951  df-bl 19952  df-mopn 19953  df-cnfld 19958  df-top 20916  df-topon 20933  df-topsp 20955  df-bases 20968  df-cn 21249  df-cnp 21250  df-tx 21583  df-hmeo 21776  df-xms 22342  df-ms 22343  df-tms 22344  df-cncf 22898
This theorem is referenced by:  knoppcn  32816
  Copyright terms: Public domain W3C validator