Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem11 Structured version   Visualization version   GIF version

Theorem knoppcnlem11 33453
Description: Lemma for knoppcn 33454. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem11.n (𝜑𝑁 ∈ ℕ)
knoppcnlem11.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem11 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem11
Dummy variables 𝑤 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem11.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem11.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem11.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
5 knoppcnlem11.1 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
7 simpr 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
81, 2, 4, 6, 7knoppcnlem7 33449 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)))
9 eqidd 2798 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) = ((𝐹𝑤)‘𝑙))
10 simplr 765 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ ℕ0)
11 elnn0uz 12136 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
1210, 11sylib 219 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ (ℤ‘0))
134ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
146ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
15 simplr 765 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑤 ∈ ℝ)
16 elfzuz 12758 . . . . . . . . . . . 12 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ (ℤ‘0))
17 nn0uz 12133 . . . . . . . . . . . 12 0 = (ℤ‘0)
1816, 17syl6eleqr 2896 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
1918adantl 482 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
201, 2, 13, 14, 15, 19knoppcnlem3 33445 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℝ)
2120recnd 10522 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℂ)
229, 12, 21fsumser 14924 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙) = (seq0( + , (𝐹𝑤))‘𝑘))
2322eqcomd 2803 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( + , (𝐹𝑤))‘𝑘) = Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙))
2423mpteq2dva 5062 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
258, 24eqtrd 2833 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
26 eqid 2797 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
27 retopon 23059 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
29 fzfid 13195 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
304adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
316adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
3218adantl 482 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
331, 2, 30, 31, 32knoppcnlem10 33452 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
3426, 28, 29, 33fsumcn 23165 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
35 ax-resscn 10447 . . . . . . 7 ℝ ⊆ ℂ
36 ssid 3916 . . . . . . 7 ℂ ⊆ ℂ
3735, 36pm3.2i 471 . . . . . 6 (ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ)
3826tgioo2 23098 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3926cnfldtopon 23078 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4039toponrestid 21217 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4126, 38, 40cncfcn 23204 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
4237, 41ax-mp 5 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
4334, 42syl6eleqr 2896 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ (ℝ–cn→ℂ))
4425, 43eqeltrd 2885 . . 3 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) ∈ (ℝ–cn→ℂ))
4544fmpttd 6749 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
46 0z 11846 . . . . . 6 0 ∈ ℤ
47 seqfn 13235 . . . . . 6 (0 ∈ ℤ → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
4846, 47ax-mp 5 . . . . 5 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0)
4917fneq2i 6328 . . . . 5 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
5048, 49mpbir 232 . . . 4 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0
51 dffn5 6599 . . . 4 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)))
5250, 51mpbi 231 . . 3 seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘))
5352feq1i 6380 . 2 (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
5445, 53sylibr 235 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wss 3865  cmpt 5047  ran crn 5451   Fn wfn 6227  wf 6228  cfv 6232  (class class class)co 7023  𝑓 cof 7272  cc 10388  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  cmin 10723   / cdiv 11151  cn 11492  2c2 11546  0cn0 11751  cz 11835  cuz 12097  (,)cioo 12592  ...cfz 12746  cfl 13014  seqcseq 13223  cexp 13283  abscabs 14431  Σcsu 14880  TopOpenctopn 16528  topGenctg 16544  fldccnfld 20231  TopOnctopon 21206   Cn ccn 21520  cnccncf 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cn 21523  df-cnp 21524  df-tx 21858  df-hmeo 22051  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173
This theorem is referenced by:  knoppcn  33454
  Copyright terms: Public domain W3C validator