Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem11 Structured version   Visualization version   GIF version

Theorem knoppcnlem11 34897
Description: Lemma for knoppcn 34898. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem11.n (𝜑𝑁 ∈ ℕ)
knoppcnlem11.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem11 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem11
Dummy variables 𝑤 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem11.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem11.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem11.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
5 knoppcnlem11.1 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
7 simpr 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
81, 2, 4, 6, 7knoppcnlem7 34893 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)))
9 eqidd 2738 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) = ((𝐹𝑤)‘𝑙))
10 simplr 767 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ ℕ0)
11 elnn0uz 12762 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
1210, 11sylib 217 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ (ℤ‘0))
134ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
146ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
15 simplr 767 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑤 ∈ ℝ)
16 elfzuz 13391 . . . . . . . . . . . 12 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ (ℤ‘0))
17 nn0uz 12759 . . . . . . . . . . . 12 0 = (ℤ‘0)
1816, 17eleqtrrdi 2849 . . . . . . . . . . 11 (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0)
1918adantl 482 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
201, 2, 13, 14, 15, 19knoppcnlem3 34889 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℝ)
2120recnd 11141 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑙) ∈ ℂ)
229, 12, 21fsumser 15574 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙) = (seq0( + , (𝐹𝑤))‘𝑘))
2322eqcomd 2743 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( + , (𝐹𝑤))‘𝑘) = Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙))
2423mpteq2dva 5203 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
258, 24eqtrd 2777 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)))
26 eqid 2737 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
27 retopon 24078 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
29 fzfid 13832 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
304adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
316adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
3218adantl 482 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0)
331, 2, 30, 31, 32knoppcnlem10 34896 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝑤 ∈ ℝ ↦ ((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
3426, 28, 29, 33fsumcn 24184 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
35 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
36 ssid 3964 . . . . . . 7 ℂ ⊆ ℂ
3735, 36pm3.2i 471 . . . . . 6 (ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ)
3826tgioo2 24117 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3926cnfldtopon 24097 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4039toponrestid 22221 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4126, 38, 40cncfcn 24224 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
4237, 41ax-mp 5 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
4334, 42eleqtrrdi 2849 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹𝑤)‘𝑙)) ∈ (ℝ–cn→ℂ))
4425, 43eqeltrd 2838 . . 3 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) ∈ (ℝ–cn→ℂ))
4544fmpttd 7059 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
46 0z 12468 . . . . . 6 0 ∈ ℤ
47 seqfn 13872 . . . . . 6 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
4846, 47ax-mp 5 . . . . 5 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0)
4917fneq2i 6597 . . . . 5 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
5048, 49mpbir 230 . . . 4 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0
51 dffn5 6898 . . . 4 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)))
5250, 51mpbi 229 . . 3 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘))
5352feq1i 6656 . 2 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ))
5445, 53sylibr 233 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3908  cmpt 5186  ran crn 5632   Fn wfn 6488  wf 6489  cfv 6493  (class class class)co 7351  f cof 7607  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11343   / cdiv 11770  cn 12111  2c2 12166  0cn0 12371  cz 12457  cuz 12721  (,)cioo 13218  ...cfz 13378  cfl 13649  seqcseq 13860  cexp 13921  abscabs 15078  Σcsu 15529  TopOpenctopn 17262  topGenctg 17278  fldccnfld 20748  TopOnctopon 22210   Cn ccn 22526  cnccncf 24190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-map 8725  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-z 12458  df-dec 12577  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-icc 13225  df-fz 13379  df-fzo 13522  df-fl 13651  df-seq 13861  df-exp 13922  df-hash 14184  df-cj 14943  df-re 14944  df-im 14945  df-sqrt 15079  df-abs 15080  df-clim 15329  df-sum 15530  df-struct 16978  df-sets 16995  df-slot 17013  df-ndx 17025  df-base 17043  df-ress 17072  df-plusg 17105  df-mulr 17106  df-starv 17107  df-sca 17108  df-vsca 17109  df-ip 17110  df-tset 17111  df-ple 17112  df-ds 17114  df-unif 17115  df-hom 17116  df-cco 17117  df-rest 17263  df-topn 17264  df-0g 17282  df-gsum 17283  df-topgen 17284  df-pt 17285  df-prds 17288  df-xrs 17343  df-qtop 17348  df-imas 17349  df-xps 17351  df-mre 17425  df-mrc 17426  df-acs 17428  df-mgm 18456  df-sgrp 18505  df-mnd 18516  df-submnd 18561  df-mulg 18831  df-cntz 19055  df-cmn 19522  df-psmet 20740  df-xmet 20741  df-met 20742  df-bl 20743  df-mopn 20744  df-cnfld 20749  df-top 22194  df-topon 22211  df-topsp 22233  df-bases 22247  df-cn 22529  df-cnp 22530  df-tx 22864  df-hmeo 23057  df-xms 23624  df-ms 23625  df-tms 23626  df-cncf 24192
This theorem is referenced by:  knoppcn  34898
  Copyright terms: Public domain W3C validator