| Step | Hyp | Ref
| Expression |
| 1 | | knoppcnlem11.t |
. . . . . 6
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| 2 | | knoppcnlem11.f |
. . . . . 6
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| 3 | | knoppcnlem11.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈
ℕ) |
| 5 | | knoppcnlem11.1 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℝ) |
| 7 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 8 | 1, 2, 4, 6, 7 | knoppcnlem7 36500 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑘))) |
| 9 | | eqidd 2738 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹‘𝑤)‘𝑙) = ((𝐹‘𝑤)‘𝑙)) |
| 10 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈
ℕ0) |
| 11 | | elnn0uz 12923 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈
(ℤ≥‘0)) |
| 13 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ) |
| 14 | 6 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ) |
| 15 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑤 ∈ ℝ) |
| 16 | | elfzuz 13560 |
. . . . . . . . . . . 12
⊢ (𝑙 ∈ (0...𝑘) → 𝑙 ∈
(ℤ≥‘0)) |
| 17 | | nn0uz 12920 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 18 | 16, 17 | eleqtrrdi 2852 |
. . . . . . . . . . 11
⊢ (𝑙 ∈ (0...𝑘) → 𝑙 ∈ ℕ0) |
| 19 | 18 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0) |
| 20 | 1, 2, 13, 14, 15, 19 | knoppcnlem3 36496 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹‘𝑤)‘𝑙) ∈ ℝ) |
| 21 | 20 | recnd 11289 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑙 ∈ (0...𝑘)) → ((𝐹‘𝑤)‘𝑙) ∈ ℂ) |
| 22 | 9, 12, 21 | fsumser 15766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) →
Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙) = (seq0( + , (𝐹‘𝑤))‘𝑘)) |
| 23 | 22 | eqcomd 2743 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( +
, (𝐹‘𝑤))‘𝑘) = Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙)) |
| 24 | 23 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( +
, (𝐹‘𝑤))‘𝑘)) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙))) |
| 25 | 8, 24 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙))) |
| 26 | | eqid 2737 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 27 | | retopon 24784 |
. . . . . . 7
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 29 | | fzfid 14014 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
| 30 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑁 ∈ ℕ) |
| 31 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝐶 ∈ ℝ) |
| 32 | 18 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → 𝑙 ∈ ℕ0) |
| 33 | 1, 2, 30, 31, 32 | knoppcnlem10 36503 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ (0...𝑘)) → (𝑤 ∈ ℝ ↦ ((𝐹‘𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
| 34 | 26, 28, 29, 33 | fsumcn 24894 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦
Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
| 35 | | ax-resscn 11212 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 36 | | ssid 4006 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
| 37 | 35, 36 | pm3.2i 470 |
. . . . . 6
⊢ (ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) |
| 38 | | tgioo4 24826 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 39 | 26 | cnfldtopon 24803 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 40 | 39 | toponrestid 22927 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 41 | 26, 38, 40 | cncfcn 24936 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
| 42 | 37, 41 | ax-mp 5 |
. . . . 5
⊢
(ℝ–cn→ℂ) =
((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) |
| 43 | 34, 42 | eleqtrrdi 2852 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦
Σ𝑙 ∈ (0...𝑘)((𝐹‘𝑤)‘𝑙)) ∈ (ℝ–cn→ℂ)) |
| 44 | 25, 43 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘) ∈ (ℝ–cn→ℂ)) |
| 45 | 44 | fmpttd 7135 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ)) |
| 46 | | 0z 12624 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 47 | | seqfn 14054 |
. . . . . 6
⊢ (0 ∈
ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn
(ℤ≥‘0)) |
| 48 | 46, 47 | ax-mp 5 |
. . . . 5
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn
(ℤ≥‘0) |
| 49 | 17 | fneq2i 6666 |
. . . . 5
⊢ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn
(ℤ≥‘0)) |
| 50 | 48, 49 | mpbir 231 |
. . . 4
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn ℕ0 |
| 51 | | dffn5 6967 |
. . . 4
⊢ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘))) |
| 52 | 50, 51 | mpbi 230 |
. . 3
⊢ seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)) |
| 53 | 52 | feq1i 6727 |
. 2
⊢ (seq0(
∘f + , (𝑚
∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0(
∘f + , (𝑚 ∈
ℕ0 ↦ (𝑧
∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℝ–cn→ℂ)) |
| 54 | 45, 53 | sylibr 234 |
1
⊢ (𝜑 → seq0( ∘f
+ , (𝑚 ∈
ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ)) |