Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem8 Structured version   Visualization version   GIF version

Theorem knoppcnlem8 33843
Description: Lemma for knoppcn 33847. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem8.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem8.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem8.n (𝜑𝑁 ∈ ℕ)
knoppcnlem8.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem8 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem8
Dummy variables 𝑎 𝑏 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem8.t . . . . 5 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem8.f . . . . 5 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem8.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
43adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
5 knoppcnlem8.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
65adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
7 simpr 487 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
81, 2, 4, 6, 7knoppcnlem7 33842 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)))
9 simplr 767 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ ℕ0)
10 nn0uz 12283 . . . . . . . 8 0 = (ℤ‘0)
119, 10eleqtrdi 2926 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ (ℤ‘0))
124ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
136ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
14 simplr 767 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑤 ∈ ℝ)
15 elfznn0 13003 . . . . . . . . . 10 (𝑎 ∈ (0...𝑘) → 𝑎 ∈ ℕ0)
1615adantl 484 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑎 ∈ ℕ0)
171, 2, 12, 13, 14, 16knoppcnlem3 33838 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑎) ∈ ℝ)
1817recnd 10672 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑎) ∈ ℂ)
19 addcl 10622 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
2019adantl 484 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
2111, 18, 20seqcl 13393 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( + , (𝐹𝑤))‘𝑘) ∈ ℂ)
2221fmpttd 6882 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ)
23 cnex 10621 . . . . . . 7 ℂ ∈ V
24 reex 10631 . . . . . . 7 ℝ ∈ V
2523, 24pm3.2i 473 . . . . . 6 (ℂ ∈ V ∧ ℝ ∈ V)
26 elmapg 8422 . . . . . 6 ((ℂ ∈ V ∧ ℝ ∈ V) → ((𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ) ↔ (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ))
2725, 26ax-mp 5 . . . . 5 ((𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ) ↔ (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ)
2822, 27sylibr 236 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ))
298, 28eqeltrd 2916 . . 3 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) ∈ (ℂ ↑m ℝ))
3029fmpttd 6882 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℂ ↑m ℝ))
31 0z 11995 . . . . . 6 0 ∈ ℤ
32 seqfn 13384 . . . . . 6 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
3331, 32ax-mp 5 . . . . 5 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0)
3410fneq2i 6454 . . . . 5 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
3533, 34mpbir 233 . . . 4 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0
36 dffn5 6727 . . . 4 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)))
3735, 36mpbi 232 . . 3 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘))
3837feq1i 6508 . 2 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℂ ↑m ℝ))
3930, 38sylibr 236 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cmpt 5149   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  m cmap 8409  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  cfl 13163  seqcseq 13372  cexp 13432  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  knoppcnlem9  33844  knoppndvlem4  33858
  Copyright terms: Public domain W3C validator