Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem8 Structured version   Visualization version   GIF version

Theorem knoppcnlem8 34729
Description: Lemma for knoppcn 34733. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem8.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem8.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem8.n (𝜑𝑁 ∈ ℕ)
knoppcnlem8.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem8 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem8
Dummy variables 𝑎 𝑏 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem8.t . . . . 5 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem8.f . . . . 5 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem8.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
43adantr 482 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
5 knoppcnlem8.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
65adantr 482 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
7 simpr 486 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
81, 2, 4, 6, 7knoppcnlem7 34728 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)))
9 simplr 767 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ ℕ0)
10 nn0uz 12670 . . . . . . . 8 0 = (ℤ‘0)
119, 10eleqtrdi 2847 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → 𝑘 ∈ (ℤ‘0))
124ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑁 ∈ ℕ)
136ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝐶 ∈ ℝ)
14 simplr 767 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑤 ∈ ℝ)
15 elfznn0 13399 . . . . . . . . . 10 (𝑎 ∈ (0...𝑘) → 𝑎 ∈ ℕ0)
1615adantl 483 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → 𝑎 ∈ ℕ0)
171, 2, 12, 13, 14, 16knoppcnlem3 34724 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑎) ∈ ℝ)
1817recnd 11053 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ 𝑎 ∈ (0...𝑘)) → ((𝐹𝑤)‘𝑎) ∈ ℂ)
19 addcl 11003 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
2019adantl 483 . . . . . . 7 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
2111, 18, 20seqcl 13793 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑤 ∈ ℝ) → (seq0( + , (𝐹𝑤))‘𝑘) ∈ ℂ)
2221fmpttd 7021 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ)
23 cnex 11002 . . . . . . 7 ℂ ∈ V
24 reex 11012 . . . . . . 7 ℝ ∈ V
2523, 24pm3.2i 472 . . . . . 6 (ℂ ∈ V ∧ ℝ ∈ V)
26 elmapg 8659 . . . . . 6 ((ℂ ∈ V ∧ ℝ ∈ V) → ((𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ) ↔ (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ))
2725, 26ax-mp 5 . . . . 5 ((𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ) ↔ (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)):ℝ⟶ℂ)
2822, 27sylibr 233 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑘)) ∈ (ℂ ↑m ℝ))
298, 28eqeltrd 2837 . . 3 ((𝜑𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) ∈ (ℂ ↑m ℝ))
3029fmpttd 7021 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℂ ↑m ℝ))
31 0z 12380 . . . . . 6 0 ∈ ℤ
32 seqfn 13783 . . . . . 6 (0 ∈ ℤ → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
3331, 32ax-mp 5 . . . . 5 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0)
3410fneq2i 6562 . . . . 5 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn (ℤ‘0))
3533, 34mpbir 230 . . . 4 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0
36 dffn5 6860 . . . 4 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) Fn ℕ0 ↔ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)))
3735, 36mpbi 229 . . 3 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘))
3837feq1i 6621 . 2 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ) ↔ (𝑘 ∈ ℕ0 ↦ (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)):ℕ0⟶(ℂ ↑m ℝ))
3930, 38sylibr 233 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cmpt 5164   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  m cmap 8646  cc 10919  cr 10920  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  cmin 11255   / cdiv 11682  cn 12023  2c2 12078  0cn0 12283  cz 12369  cuz 12632  ...cfz 13289  cfl 13560  seqcseq 13771  cexp 13832  abscabs 14994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-inf 9250  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-rp 12781  df-fz 13290  df-fl 13562  df-seq 13772  df-exp 13833  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996
This theorem is referenced by:  knoppcnlem9  34730  knoppndvlem4  34744
  Copyright terms: Public domain W3C validator