Step | Hyp | Ref
| Expression |
1 | | ovolun.a |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
2 | 1 | simpld 499 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | | ovolun.b |
. . . . 5
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
4 | 3 | simpld 499 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
5 | 2, 4 | unssd 4092 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ℝ) |
6 | | ovolun.g1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
7 | | elovolmlem 24167 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
8 | 6, 7 | sylib 221 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
9 | 8 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
10 | 9 | ffvelrnda 6843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
11 | | nneo 12098 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔
¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
12 | 11 | adantl 486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
13 | 12 | con2bid 359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈
ℕ)) |
14 | 13 | biimpar 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
((𝑛 + 1) / 2) ∈
ℕ) |
15 | | ovolun.f1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
16 | | elovolmlem 24167 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
17 | 15, 16 | sylib 221 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
18 | 17 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
19 | 18 | ffvelrnda 6843 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
20 | 14, 19 | syldan 595 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
(𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩
(ℝ × ℝ))) |
21 | 10, 20 | ifclda 4456 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
22 | | ovolun.h |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) |
23 | 21, 22 | fmptd 6870 |
. . . . . . 7
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
24 | | eqid 2759 |
. . . . . . . 8
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
25 | | ovolun.u |
. . . . . . . 8
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
26 | 24, 25 | ovolsf 24165 |
. . . . . . 7
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
27 | 23, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
28 | | rge0ssre 12881 |
. . . . . 6
⊢
(0[,)+∞) ⊆ ℝ |
29 | | fss 6513 |
. . . . . 6
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ) |
30 | 27, 28, 29 | sylancl 590 |
. . . . 5
⊢ (𝜑 → 𝑈:ℕ⟶ℝ) |
31 | 30 | frnd 6506 |
. . . 4
⊢ (𝜑 → ran 𝑈 ⊆ ℝ) |
32 | | 1nn 11678 |
. . . . . . 7
⊢ 1 ∈
ℕ |
33 | | 1z 12044 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
34 | | seqfn 13423 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
35 | 33, 34 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
36 | 25 | fneq1i 6432 |
. . . . . . . . . 10
⊢ (𝑈 Fn ℕ ↔ seq1( + ,
((abs ∘ − ) ∘ 𝐻)) Fn ℕ) |
37 | | nnuz 12314 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
38 | 37 | fneq2i 6433 |
. . . . . . . . . 10
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐻)) Fn ℕ ↔ seq1( + , ((abs ∘
− ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
39 | 36, 38 | bitri 278 |
. . . . . . . . 9
⊢ (𝑈 Fn ℕ ↔ seq1( + ,
((abs ∘ − ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
40 | 35, 39 | sylibr 237 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 Fn ℕ) |
41 | 40 | fndmd 6439 |
. . . . . . 7
⊢ (𝜑 → dom 𝑈 = ℕ) |
42 | 32, 41 | eleqtrrid 2860 |
. . . . . 6
⊢ (𝜑 → 1 ∈ dom 𝑈) |
43 | 42 | ne0d 4235 |
. . . . 5
⊢ (𝜑 → dom 𝑈 ≠ ∅) |
44 | | dm0rn0 5767 |
. . . . . 6
⊢ (dom
𝑈 = ∅ ↔ ran
𝑈 =
∅) |
45 | 44 | necon3bii 3004 |
. . . . 5
⊢ (dom
𝑈 ≠ ∅ ↔ ran
𝑈 ≠
∅) |
46 | 43, 45 | sylib 221 |
. . . 4
⊢ (𝜑 → ran 𝑈 ≠ ∅) |
47 | 1 | simprd 500 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
48 | 3 | simprd 500 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
49 | 47, 48 | readdcld 10701 |
. . . . . . 7
⊢ (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈
ℝ) |
50 | | ovolun.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
51 | 50 | rpred 12465 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
52 | 49, 51 | readdcld 10701 |
. . . . . 6
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
53 | | ovolun.s |
. . . . . . . . 9
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
54 | | ovolun.t |
. . . . . . . . 9
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
55 | | ovolun.f2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐹)) |
56 | | ovolun.f3 |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
57 | | ovolun.g2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) |
58 | | ovolun.g3 |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
59 | 1, 3, 50, 53, 54, 25, 15, 55, 56, 6, 57, 58, 22 | ovolunlem1a 24189 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
60 | 59 | ralrimiva 3114 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
61 | | breq1 5036 |
. . . . . . . . 9
⊢ (𝑧 = (𝑈‘𝑘) → (𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
62 | 61 | ralrn 6846 |
. . . . . . . 8
⊢ (𝑈 Fn ℕ →
(∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
63 | 40, 62 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
64 | 60, 63 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
65 | | brralrspcev 5093 |
. . . . . 6
⊢
(((((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶) ∈ ℝ ∧
∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘) |
66 | 52, 64, 65 | syl2anc 588 |
. . . . 5
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘) |
67 | | ressxr 10716 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
68 | 31, 67 | sstrdi 3905 |
. . . . . 6
⊢ (𝜑 → ran 𝑈 ⊆
ℝ*) |
69 | | supxrbnd2 12749 |
. . . . . 6
⊢ (ran
𝑈 ⊆
ℝ* → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup(ran 𝑈, ℝ*, < ) <
+∞)) |
70 | 68, 69 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup(ran 𝑈, ℝ*, < ) <
+∞)) |
71 | 66, 70 | mpbid 235 |
. . . 4
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) <
+∞) |
72 | | supxrbnd 12755 |
. . . 4
⊢ ((ran
𝑈 ⊆ ℝ ∧ ran
𝑈 ≠ ∅ ∧
sup(ran 𝑈,
ℝ*, < ) < +∞) → sup(ran 𝑈, ℝ*, < ) ∈
ℝ) |
73 | 31, 46, 71, 72 | syl3anc 1369 |
. . 3
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) ∈
ℝ) |
74 | | nncn 11675 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
75 | 74 | adantl 486 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
76 | | 1cnd 10667 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈
ℂ) |
77 | 75 | 2timesd 11910 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) = (𝑚 + 𝑚)) |
78 | 77 | oveq1d 7166 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = ((𝑚 + 𝑚) − 1)) |
79 | 75, 75, 76, 78 | assraddsubd 11085 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = (𝑚 + (𝑚 − 1))) |
80 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
81 | | nnm1nn0 11968 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝑚 − 1) ∈
ℕ0) |
82 | | nnnn0addcl 11957 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 − 1) ∈
ℕ0) → (𝑚 + (𝑚 − 1)) ∈ ℕ) |
83 | 80, 81, 82 | syl2anc2 589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + (𝑚 − 1)) ∈ ℕ) |
84 | 79, 83 | eqeltrd 2853 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) ∈
ℕ) |
85 | | oveq1 7158 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝑛 / 2) = (((2 · 𝑚) − 1) /
2)) |
86 | 85 | eleq1d 2837 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑚) − 1) / 2)
∈ ℕ)) |
87 | 85 | fveq2d 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑚) − 1) / 2))) |
88 | | oveq1 7158 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝑛 + 1) = (((2 · 𝑚) − 1) +
1)) |
89 | 88 | fvoveq1d 7173 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) |
90 | 86, 87, 89 | ifbieq12d 4449 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2 · 𝑚) − 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
91 | | fvex 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘(((2 · 𝑚) − 1) / 2)) ∈
V |
92 | | fvex 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) ∈
V |
93 | 91, 92 | ifex 4471 |
. . . . . . . . . . . . . 14
⊢ if((((2
· 𝑚) − 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) ∈
V |
94 | 90, 22, 93 | fvmpt 6760 |
. . . . . . . . . . . . 13
⊢ (((2
· 𝑚) − 1)
∈ ℕ → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
95 | 84, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
96 | | 2nn 11740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
97 | | nnmulcl 11691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ) → (2 · 𝑚) ∈ ℕ) |
98 | 96, 80, 97 | sylancr 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) ∈
ℕ) |
99 | 98 | nncnd 11683 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) ∈
ℂ) |
100 | | ax-1cn 10626 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
101 | | npcan 10926 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
· 𝑚) ∈ ℂ
∧ 1 ∈ ℂ) → (((2 · 𝑚) − 1) + 1) = (2 · 𝑚)) |
102 | 99, 100, 101 | sylancl 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2 · 𝑚) − 1) + 1) = (2 ·
𝑚)) |
103 | 102 | oveq1d 7166 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = ((2
· 𝑚) /
2)) |
104 | | 2cn 11742 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℂ |
105 | | 2ne0 11771 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
106 | | divcan3 11355 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝑚) / 2) = 𝑚) |
107 | 104, 105,
106 | mp3an23 1451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℂ → ((2
· 𝑚) / 2) = 𝑚) |
108 | 75, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) = 𝑚) |
109 | 103, 108 | eqtrd 2794 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = 𝑚) |
110 | 109, 80 | eqeltrd 2853 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ) |
111 | | nneo 12098 |
. . . . . . . . . . . . . . . 16
⊢ (((2
· 𝑚) − 1)
∈ ℕ → ((((2 · 𝑚) − 1) / 2) ∈ ℕ ↔ ¬
((((2 · 𝑚) −
1) + 1) / 2) ∈ ℕ)) |
112 | 84, 111 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) / 2) ∈ ℕ
↔ ¬ ((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ)) |
113 | 112 | con2bid 359 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ ↔ ¬ (((2 · 𝑚) − 1) / 2) ∈
ℕ)) |
114 | 110, 113 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ¬ (((2 ·
𝑚) − 1) / 2) ∈
ℕ) |
115 | 114 | iffalsed 4432 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → if((((2 ·
𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2))) = (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2))) |
116 | 109 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) = (𝐹‘𝑚)) |
117 | 95, 115, 116 | 3eqtrd 2798 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚)) |
118 | | fveqeq2 6668 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((2 · 𝑚) − 1) → ((𝐻‘𝑘) = (𝐹‘𝑚) ↔ (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚))) |
119 | 118 | rspcev 3542 |
. . . . . . . . . . 11
⊢ ((((2
· 𝑚) − 1)
∈ ℕ ∧ (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚)) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚)) |
120 | 84, 117, 119 | syl2anc 588 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚)) |
121 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (1st ‘(𝐻‘𝑘)) = (1st ‘(𝐹‘𝑚))) |
122 | 121 | breq1d 5043 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ↔ (1st ‘(𝐹‘𝑚)) < 𝑧)) |
123 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (2nd ‘(𝐻‘𝑘)) = (2nd ‘(𝐹‘𝑚))) |
124 | 123 | breq2d 5045 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (𝑧 < (2nd ‘(𝐻‘𝑘)) ↔ 𝑧 < (2nd ‘(𝐹‘𝑚)))) |
125 | 122, 124 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))) ↔ ((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
126 | 125 | biimprcd 253 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ((𝐻‘𝑘) = (𝐹‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
127 | 126 | reximdv 3198 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → (∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
128 | 120, 127 | syl5com 31 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
129 | 128 | rexlimdva 3209 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
130 | 129 | ralimdv 3110 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
131 | | ovolfioo 24160 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
132 | 2, 17, 131 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
133 | | ovolfioo 24160 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
134 | 2, 23, 133 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
135 | 130, 132,
134 | 3imtr4d 298 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) →
𝐴 ⊆ ∪ ran ((,) ∘ 𝐻))) |
136 | 55, 135 | mpd 15 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐻)) |
137 | | oveq1 7158 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (2 · 𝑚) → (𝑛 / 2) = ((2 · 𝑚) / 2)) |
138 | 137 | eleq1d 2837 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → ((𝑛 / 2) ∈ ℕ ↔ ((2 ·
𝑚) / 2) ∈
ℕ)) |
139 | 137 | fveq2d 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · 𝑚) / 2))) |
140 | | oveq1 7158 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (2 · 𝑚) → (𝑛 + 1) = ((2 · 𝑚) + 1)) |
141 | 140 | fvoveq1d 7173 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · 𝑚) + 1) / 2))) |
142 | 138, 139,
141 | ifbieq12d 4449 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (2 · 𝑚) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
143 | | fvex 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘((2 · 𝑚) / 2)) ∈
V |
144 | | fvex 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘(((2 · 𝑚) + 1) / 2)) ∈
V |
145 | 143, 144 | ifex 4471 |
. . . . . . . . . . . . . 14
⊢ if(((2
· 𝑚) / 2) ∈
ℕ, (𝐺‘((2
· 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) ∈
V |
146 | 142, 22, 145 | fvmpt 6760 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑚) ∈ ℕ
→ (𝐻‘(2 ·
𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
147 | 98, 146 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
148 | 108, 80 | eqeltrd 2853 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) ∈
ℕ) |
149 | 148 | iftrued 4429 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) = (𝐺‘((2 · 𝑚) / 2))) |
150 | 108 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘((2 · 𝑚) / 2)) = (𝐺‘𝑚)) |
151 | 147, 149,
150 | 3eqtrd 2798 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = (𝐺‘𝑚)) |
152 | | fveqeq2 6668 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2 · 𝑚) → ((𝐻‘𝑘) = (𝐺‘𝑚) ↔ (𝐻‘(2 · 𝑚)) = (𝐺‘𝑚))) |
153 | 152 | rspcev 3542 |
. . . . . . . . . . 11
⊢ (((2
· 𝑚) ∈ ℕ
∧ (𝐻‘(2 ·
𝑚)) = (𝐺‘𝑚)) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚)) |
154 | 98, 151, 153 | syl2anc 588 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚)) |
155 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (1st ‘(𝐻‘𝑘)) = (1st ‘(𝐺‘𝑚))) |
156 | 155 | breq1d 5043 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ↔ (1st ‘(𝐺‘𝑚)) < 𝑧)) |
157 | | fveq2 6659 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (2nd ‘(𝐻‘𝑘)) = (2nd ‘(𝐺‘𝑚))) |
158 | 157 | breq2d 5045 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (𝑧 < (2nd ‘(𝐻‘𝑘)) ↔ 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
159 | 156, 158 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))) ↔ ((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
160 | 159 | biimprcd 253 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ((𝐻‘𝑘) = (𝐺‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
161 | 160 | reximdv 3198 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → (∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
162 | 154, 161 | syl5com 31 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
163 | 162 | rexlimdva 3209 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
164 | 163 | ralimdv 3110 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
165 | | ovolfioo 24160 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
166 | 4, 8, 165 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
167 | | ovolfioo 24160 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
168 | 4, 23, 167 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
169 | 164, 166,
168 | 3imtr4d 298 |
. . . . . 6
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) →
𝐵 ⊆ ∪ ran ((,) ∘ 𝐻))) |
170 | 57, 169 | mpd 15 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐻)) |
171 | 136, 170 | unssd 4092 |
. . . 4
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ∪ ran
((,) ∘ 𝐻)) |
172 | 25 | ovollb 24172 |
. . . 4
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐴 ∪ 𝐵) ⊆ ∪ ran
((,) ∘ 𝐻)) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
173 | 23, 171, 172 | syl2anc 588 |
. . 3
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
174 | | ovollecl 24176 |
. . 3
⊢ (((𝐴 ∪ 𝐵) ⊆ ℝ ∧ sup(ran 𝑈, ℝ*, < )
∈ ℝ ∧ (vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, < )) →
(vol*‘(𝐴 ∪ 𝐵)) ∈
ℝ) |
175 | 5, 73, 173, 174 | syl3anc 1369 |
. 2
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ) |
176 | 52 | rexrd 10722 |
. . . 4
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈
ℝ*) |
177 | | supxrleub 12753 |
. . . 4
⊢ ((ran
𝑈 ⊆
ℝ* ∧ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ*) →
(sup(ran 𝑈,
ℝ*, < ) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
178 | 68, 176, 177 | syl2anc 588 |
. . 3
⊢ (𝜑 → (sup(ran 𝑈, ℝ*, < ) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
179 | 64, 178 | mpbird 260 |
. 2
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶)) |
180 | 175, 73, 52, 173, 179 | letrd 10828 |
1
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |