| Step | Hyp | Ref
| Expression |
| 1 | | ovolun.a |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 2 | 1 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 3 | | ovolun.b |
. . . . 5
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
| 4 | 3 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| 5 | 2, 4 | unssd 4172 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ℝ) |
| 6 | | ovolun.g1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
| 7 | | elovolmlem 25432 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 8 | 6, 7 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 10 | 9 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 11 | | nneo 12682 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔
¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 12 | 11 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 13 | 12 | con2bid 354 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈
ℕ)) |
| 14 | 13 | biimpar 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
((𝑛 + 1) / 2) ∈
ℕ) |
| 15 | | ovolun.f1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
| 16 | | elovolmlem 25432 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 17 | 15, 16 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 19 | 18 | ffvelcdmda 7079 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 20 | 14, 19 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
(𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩
(ℝ × ℝ))) |
| 21 | 10, 20 | ifclda 4541 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 22 | | ovolun.h |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) |
| 23 | 21, 22 | fmptd 7109 |
. . . . . . 7
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 24 | | eqid 2736 |
. . . . . . . 8
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
| 25 | | ovolun.u |
. . . . . . . 8
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
| 26 | 24, 25 | ovolsf 25430 |
. . . . . . 7
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
| 27 | 23, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
| 28 | | rge0ssre 13478 |
. . . . . 6
⊢
(0[,)+∞) ⊆ ℝ |
| 29 | | fss 6727 |
. . . . . 6
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ) |
| 30 | 27, 28, 29 | sylancl 586 |
. . . . 5
⊢ (𝜑 → 𝑈:ℕ⟶ℝ) |
| 31 | 30 | frnd 6719 |
. . . 4
⊢ (𝜑 → ran 𝑈 ⊆ ℝ) |
| 32 | | 1nn 12256 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 33 | | 1z 12627 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 34 | | seqfn 14036 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
| 35 | 33, 34 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → seq1( + , ((abs ∘
− ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
| 36 | 25 | fneq1i 6640 |
. . . . . . . . . 10
⊢ (𝑈 Fn ℕ ↔ seq1( + ,
((abs ∘ − ) ∘ 𝐻)) Fn ℕ) |
| 37 | | nnuz 12900 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 38 | 37 | fneq2i 6641 |
. . . . . . . . . 10
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝐻)) Fn ℕ ↔ seq1( + , ((abs ∘
− ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
| 39 | 36, 38 | bitri 275 |
. . . . . . . . 9
⊢ (𝑈 Fn ℕ ↔ seq1( + ,
((abs ∘ − ) ∘ 𝐻)) Fn
(ℤ≥‘1)) |
| 40 | 35, 39 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 Fn ℕ) |
| 41 | 40 | fndmd 6648 |
. . . . . . 7
⊢ (𝜑 → dom 𝑈 = ℕ) |
| 42 | 32, 41 | eleqtrrid 2842 |
. . . . . 6
⊢ (𝜑 → 1 ∈ dom 𝑈) |
| 43 | 42 | ne0d 4322 |
. . . . 5
⊢ (𝜑 → dom 𝑈 ≠ ∅) |
| 44 | | dm0rn0 5909 |
. . . . . 6
⊢ (dom
𝑈 = ∅ ↔ ran
𝑈 =
∅) |
| 45 | 44 | necon3bii 2985 |
. . . . 5
⊢ (dom
𝑈 ≠ ∅ ↔ ran
𝑈 ≠
∅) |
| 46 | 43, 45 | sylib 218 |
. . . 4
⊢ (𝜑 → ran 𝑈 ≠ ∅) |
| 47 | 1 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
| 48 | 3 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
| 49 | 47, 48 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈
ℝ) |
| 50 | | ovolun.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 51 | 50 | rpred 13056 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 52 | 49, 51 | readdcld 11269 |
. . . . . 6
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
| 53 | | ovolun.s |
. . . . . . . . 9
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 54 | | ovolun.t |
. . . . . . . . 9
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
| 55 | | ovolun.f2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐹)) |
| 56 | | ovolun.f3 |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
| 57 | | ovolun.g2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐺)) |
| 58 | | ovolun.g3 |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
| 59 | 1, 3, 50, 53, 54, 25, 15, 55, 56, 6, 57, 58, 22 | ovolunlem1a 25454 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
| 60 | 59 | ralrimiva 3133 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
| 61 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑧 = (𝑈‘𝑘) → (𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
| 62 | 61 | ralrn 7083 |
. . . . . . . 8
⊢ (𝑈 Fn ℕ →
(∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
| 63 | 40, 62 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
| 64 | 60, 63 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
| 65 | | brralrspcev 5184 |
. . . . . 6
⊢
(((((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶) ∈ ℝ ∧
∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘) |
| 66 | 52, 64, 65 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘) |
| 67 | | ressxr 11284 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
| 68 | 31, 67 | sstrdi 3976 |
. . . . . 6
⊢ (𝜑 → ran 𝑈 ⊆
ℝ*) |
| 69 | | supxrbnd2 13343 |
. . . . . 6
⊢ (ran
𝑈 ⊆
ℝ* → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup(ran 𝑈, ℝ*, < ) <
+∞)) |
| 70 | 68, 69 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup(ran 𝑈, ℝ*, < ) <
+∞)) |
| 71 | 66, 70 | mpbid 232 |
. . . 4
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) <
+∞) |
| 72 | | supxrbnd 13349 |
. . . 4
⊢ ((ran
𝑈 ⊆ ℝ ∧ ran
𝑈 ≠ ∅ ∧
sup(ran 𝑈,
ℝ*, < ) < +∞) → sup(ran 𝑈, ℝ*, < ) ∈
ℝ) |
| 73 | 31, 46, 71, 72 | syl3anc 1373 |
. . 3
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) ∈
ℝ) |
| 74 | | nncn 12253 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
| 76 | | 1cnd 11235 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈
ℂ) |
| 77 | 75 | 2timesd 12489 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) = (𝑚 + 𝑚)) |
| 78 | 77 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = ((𝑚 + 𝑚) − 1)) |
| 79 | 75, 75, 76, 78 | assraddsubd 11656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = (𝑚 + (𝑚 − 1))) |
| 80 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
| 81 | | nnm1nn0 12547 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝑚 − 1) ∈
ℕ0) |
| 82 | | nnnn0addcl 12536 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 − 1) ∈
ℕ0) → (𝑚 + (𝑚 − 1)) ∈ ℕ) |
| 83 | 80, 81, 82 | syl2anc2 585 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + (𝑚 − 1)) ∈ ℕ) |
| 84 | 79, 83 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) ∈
ℕ) |
| 85 | | oveq1 7417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝑛 / 2) = (((2 · 𝑚) − 1) /
2)) |
| 86 | 85 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑚) − 1) / 2)
∈ ℕ)) |
| 87 | 85 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑚) − 1) / 2))) |
| 88 | | oveq1 7417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝑛 + 1) = (((2 · 𝑚) − 1) +
1)) |
| 89 | 88 | fvoveq1d 7432 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑚) − 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) |
| 90 | 86, 87, 89 | ifbieq12d 4534 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2 · 𝑚) − 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
| 91 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘(((2 · 𝑚) − 1) / 2)) ∈
V |
| 92 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) ∈
V |
| 93 | 91, 92 | ifex 4556 |
. . . . . . . . . . . . . 14
⊢ if((((2
· 𝑚) − 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) ∈
V |
| 94 | 90, 22, 93 | fvmpt 6991 |
. . . . . . . . . . . . 13
⊢ (((2
· 𝑚) − 1)
∈ ℕ → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
| 95 | 84, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2)))) |
| 96 | | 2nn 12318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
| 97 | | nnmulcl 12269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ) → (2 · 𝑚) ∈ ℕ) |
| 98 | 96, 80, 97 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) ∈
ℕ) |
| 99 | 98 | nncnd 12261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) ∈
ℂ) |
| 100 | | ax-1cn 11192 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
| 101 | | npcan 11496 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
· 𝑚) ∈ ℂ
∧ 1 ∈ ℂ) → (((2 · 𝑚) − 1) + 1) = (2 · 𝑚)) |
| 102 | 99, 100, 101 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((2 · 𝑚) − 1) + 1) = (2 ·
𝑚)) |
| 103 | 102 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = ((2
· 𝑚) /
2)) |
| 104 | | 2cn 12320 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℂ |
| 105 | | 2ne0 12349 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
| 106 | | divcan3 11927 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝑚) / 2) = 𝑚) |
| 107 | 104, 105,
106 | mp3an23 1455 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℂ → ((2
· 𝑚) / 2) = 𝑚) |
| 108 | 75, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) = 𝑚) |
| 109 | 103, 108 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = 𝑚) |
| 110 | 109, 80 | eqeltrd 2835 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ) |
| 111 | | nneo 12682 |
. . . . . . . . . . . . . . . 16
⊢ (((2
· 𝑚) − 1)
∈ ℕ → ((((2 · 𝑚) − 1) / 2) ∈ ℕ ↔ ¬
((((2 · 𝑚) −
1) + 1) / 2) ∈ ℕ)) |
| 112 | 84, 111 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) / 2) ∈ ℕ
↔ ¬ ((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ)) |
| 113 | 112 | con2bid 354 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((((2 · 𝑚) − 1) + 1) / 2) ∈
ℕ ↔ ¬ (((2 · 𝑚) − 1) / 2) ∈
ℕ)) |
| 114 | 110, 113 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ¬ (((2 ·
𝑚) − 1) / 2) ∈
ℕ) |
| 115 | 114 | iffalsed 4516 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → if((((2 ·
𝑚) − 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑚) − 1) /
2)), (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2))) = (𝐹‘((((2
· 𝑚) − 1) + 1)
/ 2))) |
| 116 | 109 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) = (𝐹‘𝑚)) |
| 117 | 95, 115, 116 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚)) |
| 118 | | fveqeq2 6890 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((2 · 𝑚) − 1) → ((𝐻‘𝑘) = (𝐹‘𝑚) ↔ (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚))) |
| 119 | 118 | rspcev 3606 |
. . . . . . . . . . 11
⊢ ((((2
· 𝑚) − 1)
∈ ℕ ∧ (𝐻‘((2 · 𝑚) − 1)) = (𝐹‘𝑚)) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚)) |
| 120 | 84, 117, 119 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚)) |
| 121 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (1st ‘(𝐻‘𝑘)) = (1st ‘(𝐹‘𝑚))) |
| 122 | 121 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ↔ (1st ‘(𝐹‘𝑚)) < 𝑧)) |
| 123 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (2nd ‘(𝐻‘𝑘)) = (2nd ‘(𝐹‘𝑚))) |
| 124 | 123 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (𝑧 < (2nd ‘(𝐻‘𝑘)) ↔ 𝑧 < (2nd ‘(𝐹‘𝑚)))) |
| 125 | 122, 124 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑘) = (𝐹‘𝑚) → (((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))) ↔ ((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
| 126 | 125 | biimprcd 250 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ((𝐻‘𝑘) = (𝐹‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 127 | 126 | reximdv 3156 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → (∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐹‘𝑚) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 128 | 120, 127 | syl5com 31 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 129 | 128 | rexlimdva 3142 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 130 | 129 | ralimdv 3155 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))) → ∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 131 | | ovolfioo 25425 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
| 132 | 2, 17, 131 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑚 ∈ ℕ ((1st
‘(𝐹‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑚))))) |
| 133 | | ovolfioo 25425 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 134 | 2, 23, 133 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐴 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 135 | 130, 132,
134 | 3imtr4d 294 |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐹) →
𝐴 ⊆ ∪ ran ((,) ∘ 𝐻))) |
| 136 | 55, 135 | mpd 15 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐻)) |
| 137 | | oveq1 7417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (2 · 𝑚) → (𝑛 / 2) = ((2 · 𝑚) / 2)) |
| 138 | 137 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → ((𝑛 / 2) ∈ ℕ ↔ ((2 ·
𝑚) / 2) ∈
ℕ)) |
| 139 | 137 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · 𝑚) / 2))) |
| 140 | | oveq1 7417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (2 · 𝑚) → (𝑛 + 1) = ((2 · 𝑚) + 1)) |
| 141 | 140 | fvoveq1d 7432 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (2 · 𝑚) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · 𝑚) + 1) / 2))) |
| 142 | 138, 139,
141 | ifbieq12d 4534 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (2 · 𝑚) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
| 143 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘((2 · 𝑚) / 2)) ∈
V |
| 144 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘(((2 · 𝑚) + 1) / 2)) ∈
V |
| 145 | 143, 144 | ifex 4556 |
. . . . . . . . . . . . . 14
⊢ if(((2
· 𝑚) / 2) ∈
ℕ, (𝐺‘((2
· 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) ∈
V |
| 146 | 142, 22, 145 | fvmpt 6991 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑚) ∈ ℕ
→ (𝐻‘(2 ·
𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
| 147 | 98, 146 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2)))) |
| 148 | 108, 80 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) ∈
ℕ) |
| 149 | 148 | iftrued 4513 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) = (𝐺‘((2 · 𝑚) / 2))) |
| 150 | 108 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘((2 · 𝑚) / 2)) = (𝐺‘𝑚)) |
| 151 | 147, 149,
150 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = (𝐺‘𝑚)) |
| 152 | | fveqeq2 6890 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2 · 𝑚) → ((𝐻‘𝑘) = (𝐺‘𝑚) ↔ (𝐻‘(2 · 𝑚)) = (𝐺‘𝑚))) |
| 153 | 152 | rspcev 3606 |
. . . . . . . . . . 11
⊢ (((2
· 𝑚) ∈ ℕ
∧ (𝐻‘(2 ·
𝑚)) = (𝐺‘𝑚)) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚)) |
| 154 | 98, 151, 153 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚)) |
| 155 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (1st ‘(𝐻‘𝑘)) = (1st ‘(𝐺‘𝑚))) |
| 156 | 155 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ↔ (1st ‘(𝐺‘𝑚)) < 𝑧)) |
| 157 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (2nd ‘(𝐻‘𝑘)) = (2nd ‘(𝐺‘𝑚))) |
| 158 | 157 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (𝑧 < (2nd ‘(𝐻‘𝑘)) ↔ 𝑧 < (2nd ‘(𝐺‘𝑚)))) |
| 159 | 156, 158 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑘) = (𝐺‘𝑚) → (((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))) ↔ ((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
| 160 | 159 | biimprcd 250 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ((𝐻‘𝑘) = (𝐺‘𝑚) → ((1st ‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 161 | 160 | reximdv 3156 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → (∃𝑘 ∈ ℕ (𝐻‘𝑘) = (𝐺‘𝑚) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 162 | 154, 161 | syl5com 31 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 163 | 162 | rexlimdva 3142 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 164 | 163 | ralimdv 3155 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))) → ∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 165 | | ovolfioo 25425 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
| 166 | 4, 8, 165 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∀𝑧 ∈ 𝐵 ∃𝑚 ∈ ℕ ((1st
‘(𝐺‘𝑚)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐺‘𝑚))))) |
| 167 | | ovolfioo 25425 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 168 | 4, 23, 167 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐻) ↔
∀𝑧 ∈ 𝐵 ∃𝑘 ∈ ℕ ((1st
‘(𝐻‘𝑘)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐻‘𝑘))))) |
| 169 | 164, 166,
168 | 3imtr4d 294 |
. . . . . 6
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
((,) ∘ 𝐺) →
𝐵 ⊆ ∪ ran ((,) ∘ 𝐻))) |
| 170 | 57, 169 | mpd 15 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
((,) ∘ 𝐻)) |
| 171 | 136, 170 | unssd 4172 |
. . . 4
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ∪ ran
((,) ∘ 𝐻)) |
| 172 | 25 | ovollb 25437 |
. . . 4
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐴 ∪ 𝐵) ⊆ ∪ ran
((,) ∘ 𝐻)) →
(vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
| 173 | 23, 171, 172 | syl2anc 584 |
. . 3
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, <
)) |
| 174 | | ovollecl 25441 |
. . 3
⊢ (((𝐴 ∪ 𝐵) ⊆ ℝ ∧ sup(ran 𝑈, ℝ*, < )
∈ ℝ ∧ (vol*‘(𝐴 ∪ 𝐵)) ≤ sup(ran 𝑈, ℝ*, < )) →
(vol*‘(𝐴 ∪ 𝐵)) ∈
ℝ) |
| 175 | 5, 73, 173, 174 | syl3anc 1373 |
. 2
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ) |
| 176 | 52 | rexrd 11290 |
. . . 4
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈
ℝ*) |
| 177 | | supxrleub 13347 |
. . . 4
⊢ ((ran
𝑈 ⊆
ℝ* ∧ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ*) →
(sup(ran 𝑈,
ℝ*, < ) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
| 178 | 68, 176, 177 | syl2anc 584 |
. . 3
⊢ (𝜑 → (sup(ran 𝑈, ℝ*, < ) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))) |
| 179 | 64, 178 | mpbird 257 |
. 2
⊢ (𝜑 → sup(ran 𝑈, ℝ*, < ) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶)) |
| 180 | 175, 73, 52, 173, 179 | letrd 11397 |
1
⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |