| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mtest.n | . . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 2 |  | mtest.d | . . 3
⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) | 
| 3 |  | mtest.z | . . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑁) | 
| 4 |  | mtest.c | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) | 
| 5 | 4 | recnd 11289 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℂ) | 
| 6 | 3, 1, 5 | serf 14071 | . . . . 5
⊢ (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℂ) | 
| 7 | 6 | ffvelcdmda 7104 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) | 
| 8 | 7 | ralrimiva 3146 | . . 3
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) | 
| 9 | 3 | climbdd 15708 | . . 3
⊢ ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ∧ ∀𝑚 ∈ 𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) | 
| 10 | 1, 2, 8, 9 | syl3anc 1373 | . 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) | 
| 11 | 1 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → 𝑁 ∈ ℤ) | 
| 12 |  | seqfn 14054 | . . . . . . 7
⊢ (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn
(ℤ≥‘𝑁)) | 
| 13 | 1, 12 | syl 17 | . . . . . 6
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) | 
| 14 | 3 | fneq2i 6666 | . . . . . 6
⊢ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) | 
| 15 | 13, 14 | sylibr 234 | . . . . 5
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍) | 
| 16 |  | mtest.t | . . . . 5
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) | 
| 17 |  | ulmf2 26427 | . . . . 5
⊢
((seq𝑁(
∘f + , 𝐹)
Fn 𝑍 ∧ seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) | 
| 18 | 15, 16, 17 | syl2anc 584 | . . . 4
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) | 
| 19 | 18 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) | 
| 20 |  | simplrl 777 | . . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → 𝑦 ∈ ℝ) | 
| 21 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑗)‘𝑥) = ((𝐹‘𝑗)‘𝑧)) | 
| 22 | 21 | mpteq2dv 5244 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)) = (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))) | 
| 23 | 22 | seqeq3d 14050 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥))) = seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))) | 
| 24 | 23 | fveq1d 6908 | . . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) | 
| 25 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛)) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛)) | 
| 26 |  | fvex 6919 | . . . . . . . . . 10
⊢ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛) ∈ V | 
| 27 | 24, 25, 26 | fvmpt 7016 | . . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) | 
| 28 | 27 | adantl 481 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) | 
| 29 |  | mtest.f | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | 
| 30 | 29 | ad3antrrr 730 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | 
| 31 | 30 | feqmptd 6977 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹 = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))) | 
| 32 | 30 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) | 
| 33 |  | elmapi 8889 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑗):𝑆⟶ℂ) | 
| 34 | 32, 33 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗):𝑆⟶ℂ) | 
| 35 | 34 | feqmptd 6977 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))) | 
| 36 | 35 | mpteq2dva 5242 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) = (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥)))) | 
| 37 | 31, 36 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹 = (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥)))) | 
| 38 | 37 | seqeq3d 14050 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → seq𝑁( ∘f + , 𝐹) = seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))) | 
| 39 | 38 | fveq1d 6908 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))‘𝑛)) | 
| 40 |  | mtest.s | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| 41 | 40 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑆 ∈ 𝑉) | 
| 42 |  | simplr 769 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑛 ∈ 𝑍) | 
| 43 | 42, 3 | eleqtrdi 2851 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑛 ∈ (ℤ≥‘𝑁)) | 
| 44 |  | elfzuz 13560 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) | 
| 45 | 44, 3 | eleqtrrdi 2852 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ 𝑍) | 
| 46 | 45 | ssriv 3987 | . . . . . . . . . . . 12
⊢ (𝑁...𝑛) ⊆ 𝑍 | 
| 47 | 46 | a1i 11 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑛) ⊆ 𝑍) | 
| 48 | 34 | ffvelcdmda 7104 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑗)‘𝑥) ∈ ℂ) | 
| 49 | 48 | anasss 466 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ (𝑗 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆)) → ((𝐹‘𝑗)‘𝑥) ∈ ℂ) | 
| 50 | 41, 43, 47, 49 | seqof2 14101 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))‘𝑛) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))) | 
| 51 | 39, 50 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))) | 
| 52 | 51 | fveq1d 6908 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧)) | 
| 53 | 45 | adantl 481 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) | 
| 54 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | 
| 55 | 54 | fveq1d 6908 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝐹‘𝑗)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) | 
| 56 |  | eqid 2737 | . . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)) = (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)) | 
| 57 |  | fvex 6919 | . . . . . . . . . . 11
⊢ ((𝐹‘𝑘)‘𝑧) ∈ V | 
| 58 | 55, 56, 57 | fvmpt 7016 | . . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) | 
| 59 | 53, 58 | syl 17 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) | 
| 60 |  | simplr 769 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → 𝑧 ∈ 𝑆) | 
| 61 | 34, 60 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)‘𝑧) ∈ ℂ) | 
| 62 | 61 | fmpttd 7135 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)):𝑍⟶ℂ) | 
| 63 | 62 | ffvelcdmda 7104 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) ∈ ℂ) | 
| 64 | 45, 63 | sylan2 593 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) ∈ ℂ) | 
| 65 | 59, 64 | eqeltrrd 2842 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) | 
| 66 | 59, 43, 65 | fsumser 15766 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) | 
| 67 | 28, 52, 66 | 3eqtr4d 2787 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) | 
| 68 | 67 | fveq2d 6910 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) = (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧))) | 
| 69 |  | fzfid 14014 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑛) ∈ Fin) | 
| 70 | 69, 65 | fsumcl 15769 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧) ∈ ℂ) | 
| 71 | 70 | abscld 15475 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ∈ ℝ) | 
| 72 | 65 | abscld 15475 | . . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) | 
| 73 | 69, 72 | fsumrecl 15770 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) | 
| 74 | 20 | adantr 480 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ ℝ) | 
| 75 | 69, 65 | fsumabs 15837 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧))) | 
| 76 |  | simp-4l 783 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝜑) | 
| 77 | 76, 53, 4 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) ∈ ℝ) | 
| 78 | 69, 77 | fsumrecl 15770 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ∈ ℝ) | 
| 79 |  | simplr 769 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑧 ∈ 𝑆) | 
| 80 |  | mtest.l | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) | 
| 81 | 76, 53, 79, 80 | syl12anc 837 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) | 
| 82 | 69, 72, 77, 81 | fsumle 15835 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) | 
| 83 | 78 | recnd 11289 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ∈ ℂ) | 
| 84 | 83 | abscld 15475 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) ∈ ℝ) | 
| 85 | 78 | leabsd 15453 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ≤ (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘))) | 
| 86 |  | eqidd 2738 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) = (𝑀‘𝑘)) | 
| 87 | 76, 53, 5 | syl2anc 584 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) ∈ ℂ) | 
| 88 | 86, 43, 87 | fsumser 15766 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) = (seq𝑁( + , 𝑀)‘𝑛)) | 
| 89 | 88 | fveq2d 6910 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛))) | 
| 90 |  | simprr 773 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) | 
| 91 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (seq𝑁( + , 𝑀)‘𝑚) = (seq𝑁( + , 𝑀)‘𝑛)) | 
| 92 | 91 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (abs‘(seq𝑁( + , 𝑀)‘𝑚)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛))) | 
| 93 | 92 | breq1d 5153 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ↔ (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)) | 
| 94 | 93 | rspccva 3621 | . . . . . . . . . . . 12
⊢
((∀𝑚 ∈
𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) | 
| 95 | 90, 94 | sylan 580 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) | 
| 96 | 95 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) | 
| 97 | 89, 96 | eqbrtrd 5165 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) ≤ 𝑦) | 
| 98 | 78, 84, 74, 85, 97 | letrd 11418 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ≤ 𝑦) | 
| 99 | 73, 78, 74, 82, 98 | letrd 11418 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑦) | 
| 100 | 71, 73, 74, 75, 99 | letrd 11418 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ≤ 𝑦) | 
| 101 | 68, 100 | eqbrtrd 5165 | . . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) | 
| 102 | 101 | ralrimiva 3146 | . . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) | 
| 103 |  | brralrspcev 5203 | . . . 4
⊢ ((𝑦 ∈ ℝ ∧
∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥) | 
| 104 | 20, 102, 103 | syl2anc 584 | . . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥) | 
| 105 | 16 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) | 
| 106 | 3, 11, 19, 104, 105 | ulmbdd 26441 | . 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) | 
| 107 | 10, 106 | rexlimddv 3161 | 1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) |