MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtestbdd Structured version   Visualization version   GIF version

Theorem mtestbdd 26312
Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
mtest.t (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
Assertion
Ref Expression
mtestbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝑀,𝑥,𝑧   𝑘,𝑁,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑥,𝑇,𝑧   𝑘,𝑍,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧
Allowed substitution hints:   𝑇(𝑘)   𝑉(𝑥,𝑧,𝑘)   𝑊(𝑥,𝑧,𝑘)

Proof of Theorem mtestbdd
Dummy variables 𝑗 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . 3 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . 3 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . . 6 𝑍 = (ℤ𝑁)
4 mtest.c . . . . . . 7 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
54recnd 11143 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℂ)
63, 1, 5serf 13937 . . . . 5 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℂ)
76ffvelcdmda 7018 . . . 4 ((𝜑𝑚𝑍) → (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
87ralrimiva 3121 . . 3 (𝜑 → ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
93climbdd 15579 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ∧ ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
101, 2, 8, 9syl3anc 1373 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
111adantr 480 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → 𝑁 ∈ ℤ)
12 seqfn 13920 . . . . . . 7 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
131, 12syl 17 . . . . . 6 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
143fneq2i 6580 . . . . . 6 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
1513, 14sylibr 234 . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
16 mtest.t . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
17 ulmf2 26291 . . . . 5 ((seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1815, 16, 17syl2anc 584 . . . 4 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1918adantr 480 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
20 simplrl 776 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
21 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑗)‘𝑥) = ((𝐹𝑗)‘𝑧))
2221mpteq2dv 5186 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))
2322seqeq3d 13916 . . . . . . . . . . 11 (𝑥 = 𝑧 → seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥))) = seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))))
2423fveq1d 6824 . . . . . . . . . 10 (𝑥 = 𝑧 → (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
25 eqid 2729 . . . . . . . . . 10 (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))
26 fvex 6835 . . . . . . . . . 10 (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛) ∈ V
2724, 25, 26fvmpt 6930 . . . . . . . . 9 (𝑧𝑆 → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
2827adantl 481 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
29 mtest.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
3029ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
3130feqmptd 6891 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝐹𝑗)))
3230ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
33 elmapi 8776 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗):𝑆⟶ℂ)
3534feqmptd 6891 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))
3635mpteq2dva 5185 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3731, 36eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3837seqeq3d 13916 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → seq𝑁( ∘f + , 𝐹) = seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))))
3938fveq1d 6824 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛))
40 mtest.s . . . . . . . . . . . 12 (𝜑𝑆𝑉)
4140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑆𝑉)
42 simplr 768 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛𝑍)
4342, 3eleqtrdi 2838 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛 ∈ (ℤ𝑁))
44 elfzuz 13423 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
4544, 3eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑁...𝑛) → 𝑘𝑍)
4645ssriv 3939 . . . . . . . . . . . 12 (𝑁...𝑛) ⊆ 𝑍
4746a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ⊆ 𝑍)
4834ffvelcdmda 7018 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) ∧ 𝑥𝑆) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
4948anasss 466 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ (𝑗𝑍𝑥𝑆)) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
5041, 43, 47, 49seqof2 13967 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5139, 50eqtrd 2764 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5251fveq1d 6824 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧))
5345adantl 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
54 fveq2 6822 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
5554fveq1d 6824 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐹𝑗)‘𝑧) = ((𝐹𝑘)‘𝑧))
56 eqid 2729 . . . . . . . . . . 11 (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))
57 fvex 6835 . . . . . . . . . . 11 ((𝐹𝑘)‘𝑧) ∈ V
5855, 56, 57fvmpt 6930 . . . . . . . . . 10 (𝑘𝑍 → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
5953, 58syl 17 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
60 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → 𝑧𝑆)
6134, 60ffvelcdmd 7019 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
6261fmpttd 7049 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)):𝑍⟶ℂ)
6362ffvelcdmda 7018 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6445, 63sylan2 593 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6559, 64eqeltrrd 2829 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
6659, 43, 65fsumser 15637 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
6728, 52, 663eqtr4d 2774 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧))
6867fveq2d 6826 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) = (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)))
69 fzfid 13880 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ∈ Fin)
7069, 65fsumcl 15640 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) ∈ ℂ)
7170abscld 15346 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ∈ ℝ)
7265abscld 15346 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7369, 72fsumrecl 15641 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7420adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑦 ∈ ℝ)
7569, 65fsumabs 15708 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)))
76 simp-4l 782 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝜑)
7776, 53, 4syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℝ)
7869, 77fsumrecl 15641 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℝ)
79 simplr 768 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑧𝑆)
80 mtest.l . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8176, 53, 79, 80syl12anc 836 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8269, 72, 77, 81fsumle 15706 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘))
8378recnd 11143 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℂ)
8483abscld 15346 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ∈ ℝ)
8578leabsd 15322 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)))
86 eqidd 2730 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) = (𝑀𝑘))
8776, 53, 5syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℂ)
8886, 43, 87fsumser 15637 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑛))
8988fveq2d 6826 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
90 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
91 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (seq𝑁( + , 𝑀)‘𝑚) = (seq𝑁( + , 𝑀)‘𝑛))
9291fveq2d 6826 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (abs‘(seq𝑁( + , 𝑀)‘𝑚)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
9392breq1d 5102 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ↔ (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦))
9493rspccva 3576 . . . . . . . . . . . 12 ((∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9590, 94sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9695adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9789, 96eqbrtrd 5114 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ≤ 𝑦)
9878, 84, 74, 85, 97letrd 11273 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ 𝑦)
9973, 78, 74, 82, 98letrd 11273 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10071, 73, 74, 75, 99letrd 11273 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10168, 100eqbrtrd 5114 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
102101ralrimiva 3121 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
103 brralrspcev 5152 . . . 4 ((𝑦 ∈ ℝ ∧ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10420, 102, 103syl2anc 584 . . 3 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10516adantr 480 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
1063, 11, 19, 104, 105ulmbdd 26305 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
10710, 106rexlimddv 3136 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  m cmap 8753  cc 11007  cr 11008   + caddc 11012  cle 11150  cz 12471  cuz 12735  ...cfz 13410  seqcseq 13908  abscabs 15141  cli 15391  Σcsu 15593  𝑢culm 26283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ulm 26284
This theorem is referenced by:  lgamgulmlem6  26942
  Copyright terms: Public domain W3C validator