MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtestbdd Structured version   Visualization version   GIF version

Theorem mtestbdd 26434
Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
mtest.t (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
Assertion
Ref Expression
mtestbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝑀,𝑥,𝑧   𝑘,𝑁,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑥,𝑇,𝑧   𝑘,𝑍,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧
Allowed substitution hints:   𝑇(𝑘)   𝑉(𝑥,𝑧,𝑘)   𝑊(𝑥,𝑧,𝑘)

Proof of Theorem mtestbdd
Dummy variables 𝑗 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . 3 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . 3 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . . 6 𝑍 = (ℤ𝑁)
4 mtest.c . . . . . . 7 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
54recnd 11292 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℂ)
63, 1, 5serf 14050 . . . . 5 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℂ)
76ffvelcdmda 7098 . . . 4 ((𝜑𝑚𝑍) → (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
87ralrimiva 3136 . . 3 (𝜑 → ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
93climbdd 15676 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ∧ ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
101, 2, 8, 9syl3anc 1368 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
111adantr 479 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → 𝑁 ∈ ℤ)
12 seqfn 14033 . . . . . . 7 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
131, 12syl 17 . . . . . 6 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
143fneq2i 6658 . . . . . 6 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
1513, 14sylibr 233 . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
16 mtest.t . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
17 ulmf2 26413 . . . . 5 ((seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1815, 16, 17syl2anc 582 . . . 4 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1918adantr 479 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
20 simplrl 775 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
21 fveq2 6901 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑗)‘𝑥) = ((𝐹𝑗)‘𝑧))
2221mpteq2dv 5255 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))
2322seqeq3d 14029 . . . . . . . . . . 11 (𝑥 = 𝑧 → seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥))) = seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))))
2423fveq1d 6903 . . . . . . . . . 10 (𝑥 = 𝑧 → (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
25 eqid 2726 . . . . . . . . . 10 (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))
26 fvex 6914 . . . . . . . . . 10 (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛) ∈ V
2724, 25, 26fvmpt 7009 . . . . . . . . 9 (𝑧𝑆 → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
2827adantl 480 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
29 mtest.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
3029ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
3130feqmptd 6971 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝐹𝑗)))
3230ffvelcdmda 7098 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
33 elmapi 8878 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗):𝑆⟶ℂ)
3534feqmptd 6971 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))
3635mpteq2dva 5253 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3731, 36eqtrd 2766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3837seqeq3d 14029 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → seq𝑁( ∘f + , 𝐹) = seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))))
3938fveq1d 6903 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛))
40 mtest.s . . . . . . . . . . . 12 (𝜑𝑆𝑉)
4140ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑆𝑉)
42 simplr 767 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛𝑍)
4342, 3eleqtrdi 2836 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛 ∈ (ℤ𝑁))
44 elfzuz 13551 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
4544, 3eleqtrrdi 2837 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑁...𝑛) → 𝑘𝑍)
4645ssriv 3983 . . . . . . . . . . . 12 (𝑁...𝑛) ⊆ 𝑍
4746a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ⊆ 𝑍)
4834ffvelcdmda 7098 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) ∧ 𝑥𝑆) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
4948anasss 465 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ (𝑗𝑍𝑥𝑆)) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
5041, 43, 47, 49seqof2 14080 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5139, 50eqtrd 2766 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5251fveq1d 6903 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧))
5345adantl 480 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
54 fveq2 6901 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
5554fveq1d 6903 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐹𝑗)‘𝑧) = ((𝐹𝑘)‘𝑧))
56 eqid 2726 . . . . . . . . . . 11 (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))
57 fvex 6914 . . . . . . . . . . 11 ((𝐹𝑘)‘𝑧) ∈ V
5855, 56, 57fvmpt 7009 . . . . . . . . . 10 (𝑘𝑍 → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
5953, 58syl 17 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
60 simplr 767 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → 𝑧𝑆)
6134, 60ffvelcdmd 7099 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
6261fmpttd 7129 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)):𝑍⟶ℂ)
6362ffvelcdmda 7098 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6445, 63sylan2 591 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6559, 64eqeltrrd 2827 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
6659, 43, 65fsumser 15734 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
6728, 52, 663eqtr4d 2776 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧))
6867fveq2d 6905 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) = (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)))
69 fzfid 13993 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ∈ Fin)
7069, 65fsumcl 15737 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) ∈ ℂ)
7170abscld 15441 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ∈ ℝ)
7265abscld 15441 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7369, 72fsumrecl 15738 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7420adantr 479 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑦 ∈ ℝ)
7569, 65fsumabs 15805 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)))
76 simp-4l 781 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝜑)
7776, 53, 4syl2anc 582 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℝ)
7869, 77fsumrecl 15738 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℝ)
79 simplr 767 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑧𝑆)
80 mtest.l . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8176, 53, 79, 80syl12anc 835 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8269, 72, 77, 81fsumle 15803 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘))
8378recnd 11292 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℂ)
8483abscld 15441 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ∈ ℝ)
8578leabsd 15419 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)))
86 eqidd 2727 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) = (𝑀𝑘))
8776, 53, 5syl2anc 582 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℂ)
8886, 43, 87fsumser 15734 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑛))
8988fveq2d 6905 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
90 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
91 fveq2 6901 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (seq𝑁( + , 𝑀)‘𝑚) = (seq𝑁( + , 𝑀)‘𝑛))
9291fveq2d 6905 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (abs‘(seq𝑁( + , 𝑀)‘𝑚)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
9392breq1d 5163 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ↔ (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦))
9493rspccva 3607 . . . . . . . . . . . 12 ((∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9590, 94sylan 578 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9695adantr 479 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9789, 96eqbrtrd 5175 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ≤ 𝑦)
9878, 84, 74, 85, 97letrd 11421 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ 𝑦)
9973, 78, 74, 82, 98letrd 11421 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10071, 73, 74, 75, 99letrd 11421 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10168, 100eqbrtrd 5175 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
102101ralrimiva 3136 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
103 brralrspcev 5213 . . . 4 ((𝑦 ∈ ℝ ∧ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10420, 102, 103syl2anc 582 . . 3 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10516adantr 479 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
1063, 11, 19, 104, 105ulmbdd 26427 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
10710, 106rexlimddv 3151 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  wss 3947   class class class wbr 5153  cmpt 5236  dom cdm 5682   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  m cmap 8855  cc 11156  cr 11157   + caddc 11161  cle 11299  cz 12610  cuz 12874  ...cfz 13538  seqcseq 14021  abscabs 15239  cli 15486  Σcsu 15690  𝑢culm 26405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-ico 13384  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-ulm 26406
This theorem is referenced by:  lgamgulmlem6  27062
  Copyright terms: Public domain W3C validator