MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtestbdd Structured version   Visualization version   GIF version

Theorem mtestbdd 25564
Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
mtest.t (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
Assertion
Ref Expression
mtestbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝑀,𝑥,𝑧   𝑘,𝑁,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑥,𝑇,𝑧   𝑘,𝑍,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧
Allowed substitution hints:   𝑇(𝑘)   𝑉(𝑥,𝑧,𝑘)   𝑊(𝑥,𝑧,𝑘)

Proof of Theorem mtestbdd
Dummy variables 𝑗 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . 3 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . 3 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . . 6 𝑍 = (ℤ𝑁)
4 mtest.c . . . . . . 7 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
54recnd 11003 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℂ)
63, 1, 5serf 13751 . . . . 5 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℂ)
76ffvelrnda 6961 . . . 4 ((𝜑𝑚𝑍) → (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
87ralrimiva 3103 . . 3 (𝜑 → ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ)
93climbdd 15383 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ∧ ∀𝑚𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
101, 2, 8, 9syl3anc 1370 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
111adantr 481 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → 𝑁 ∈ ℤ)
12 seqfn 13733 . . . . . . 7 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
131, 12syl 17 . . . . . 6 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
143fneq2i 6531 . . . . . 6 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
1513, 14sylibr 233 . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
16 mtest.t . . . . 5 (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
17 ulmf2 25543 . . . . 5 ((seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1815, 16, 17syl2anc 584 . . . 4 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
1918adantr 481 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
20 simplrl 774 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
21 fveq2 6774 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑗)‘𝑥) = ((𝐹𝑗)‘𝑧))
2221mpteq2dv 5176 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))
2322seqeq3d 13729 . . . . . . . . . . 11 (𝑥 = 𝑧 → seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥))) = seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))))
2423fveq1d 6776 . . . . . . . . . 10 (𝑥 = 𝑧 → (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
25 eqid 2738 . . . . . . . . . 10 (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))
26 fvex 6787 . . . . . . . . . 10 (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛) ∈ V
2724, 25, 26fvmpt 6875 . . . . . . . . 9 (𝑧𝑆 → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
2827adantl 482 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
29 mtest.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
3029ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
3130feqmptd 6837 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝐹𝑗)))
3230ffvelrnda 6961 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
33 elmapi 8637 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗):𝑆⟶ℂ)
3534feqmptd 6837 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))
3635mpteq2dva 5174 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ (𝐹𝑗)) = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3731, 36eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝐹 = (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))
3837seqeq3d 13729 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → seq𝑁( ∘f + , 𝐹) = seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥)))))
3938fveq1d 6776 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛))
40 mtest.s . . . . . . . . . . . 12 (𝜑𝑆𝑉)
4140ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑆𝑉)
42 simplr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛𝑍)
4342, 3eleqtrdi 2849 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑛 ∈ (ℤ𝑁))
44 elfzuz 13252 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ𝑁))
4544, 3eleqtrrdi 2850 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑁...𝑛) → 𝑘𝑍)
4645ssriv 3925 . . . . . . . . . . . 12 (𝑁...𝑛) ⊆ 𝑍
4746a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ⊆ 𝑍)
4834ffvelrnda 6961 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) ∧ 𝑥𝑆) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
4948anasss 467 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ (𝑗𝑍𝑥𝑆)) → ((𝐹𝑗)‘𝑥) ∈ ℂ)
5041, 43, 47, 49seqof2 13781 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , (𝑗𝑍 ↦ (𝑥𝑆 ↦ ((𝐹𝑗)‘𝑥))))‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5139, 50eqtrd 2778 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛)))
5251fveq1d 6776 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = ((𝑥𝑆 ↦ (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑥)))‘𝑛))‘𝑧))
5345adantl 482 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘𝑍)
54 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
5554fveq1d 6776 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐹𝑗)‘𝑧) = ((𝐹𝑘)‘𝑧))
56 eqid 2738 . . . . . . . . . . 11 (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))
57 fvex 6787 . . . . . . . . . . 11 ((𝐹𝑘)‘𝑧) ∈ V
5855, 56, 57fvmpt 6875 . . . . . . . . . 10 (𝑘𝑍 → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
5953, 58syl 17 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
60 simplr 766 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → 𝑧𝑆)
6134, 60ffvelrnd 6962 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑗𝑍) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
6261fmpttd 6989 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)):𝑍⟶ℂ)
6362ffvelrnda 6961 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6445, 63sylan2 593 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧))‘𝑘) ∈ ℂ)
6559, 64eqeltrrd 2840 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
6659, 43, 65fsumser 15442 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑧)))‘𝑛))
6728, 52, 663eqtr4d 2788 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧))
6867fveq2d 6778 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) = (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)))
69 fzfid 13693 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (𝑁...𝑛) ∈ Fin)
7069, 65fsumcl 15445 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧) ∈ ℂ)
7170abscld 15148 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ∈ ℝ)
7265abscld 15148 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7369, 72fsumrecl 15446 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
7420adantr 481 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → 𝑦 ∈ ℝ)
7569, 65fsumabs 15513 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)))
76 simp-4l 780 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝜑)
7776, 53, 4syl2anc 584 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℝ)
7869, 77fsumrecl 15446 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℝ)
79 simplr 766 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑧𝑆)
80 mtest.l . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8176, 53, 79, 80syl12anc 834 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
8269, 72, 77, 81fsumle 15511 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘))
8378recnd 11003 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ∈ ℂ)
8483abscld 15148 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ∈ ℝ)
8578leabsd 15126 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)))
86 eqidd 2739 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) = (𝑀𝑘))
8776, 53, 5syl2anc 584 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀𝑘) ∈ ℂ)
8886, 43, 87fsumser 15442 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑛))
8988fveq2d 6778 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
90 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)
91 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (seq𝑁( + , 𝑀)‘𝑚) = (seq𝑁( + , 𝑀)‘𝑛))
9291fveq2d 6778 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (abs‘(seq𝑁( + , 𝑀)‘𝑚)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛)))
9392breq1d 5084 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ↔ (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦))
9493rspccva 3560 . . . . . . . . . . . 12 ((∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9590, 94sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9695adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)
9789, 96eqbrtrd 5096 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘)) ≤ 𝑦)
9878, 84, 74, 85, 97letrd 11132 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀𝑘) ≤ 𝑦)
9973, 78, 74, 82, 98letrd 11132 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10071, 73, 74, 75, 99letrd 11132 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹𝑘)‘𝑧)) ≤ 𝑦)
10168, 100eqbrtrd 5096 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) ∧ 𝑧𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
102101ralrimiva 3103 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦)
103 brralrspcev 5134 . . . 4 ((𝑦 ∈ ℝ ∧ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10420, 102, 103syl2anc 584 . . 3 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥)
10516adantr 481 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹)(⇝𝑢𝑆)𝑇)
1063, 11, 19, 104, 105ulmbdd 25557 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
10710, 106rexlimddv 3220 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝑇𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  cc 10869  cr 10870   + caddc 10874  cle 11010  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  abscabs 14945  cli 15193  Σcsu 15397  𝑢culm 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-ulm 25536
This theorem is referenced by:  lgamgulmlem6  26183
  Copyright terms: Public domain W3C validator