Step | Hyp | Ref
| Expression |
1 | | mtest.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
2 | | mtest.d |
. . 3
⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) |
3 | | mtest.z |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑁) |
4 | | mtest.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) |
5 | 4 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℂ) |
6 | 3, 1, 5 | serf 13679 |
. . . . 5
⊢ (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℂ) |
7 | 6 | ffvelrnda 6943 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) |
8 | 7 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) |
9 | 3 | climbdd 15311 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ∧ ∀𝑚 ∈ 𝑍 (seq𝑁( + , 𝑀)‘𝑚) ∈ ℂ) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) |
10 | 1, 2, 8, 9 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) |
11 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → 𝑁 ∈ ℤ) |
12 | | seqfn 13661 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn
(ℤ≥‘𝑁)) |
13 | 1, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) |
14 | 3 | fneq2i 6515 |
. . . . . 6
⊢ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) |
15 | 13, 14 | sylibr 233 |
. . . . 5
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍) |
16 | | mtest.t |
. . . . 5
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) |
17 | | ulmf2 25448 |
. . . . 5
⊢
((seq𝑁(
∘f + , 𝐹)
Fn 𝑍 ∧ seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) |
18 | 15, 16, 17 | syl2anc 583 |
. . . 4
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) |
19 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) |
20 | | simplrl 773 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → 𝑦 ∈ ℝ) |
21 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑗)‘𝑥) = ((𝐹‘𝑗)‘𝑧)) |
22 | 21 | mpteq2dv 5172 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)) = (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))) |
23 | 22 | seqeq3d 13657 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥))) = seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))) |
24 | 23 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) |
25 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛)) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛)) |
26 | | fvex 6769 |
. . . . . . . . . 10
⊢ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛) ∈ V |
27 | 24, 25, 26 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) |
28 | 27 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) |
29 | | mtest.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
30 | 29 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
31 | 30 | feqmptd 6819 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹 = (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗))) |
32 | 30 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) |
33 | | elmapi 8595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑗):𝑆⟶ℂ) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗):𝑆⟶ℂ) |
35 | 34 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))) |
36 | 35 | mpteq2dva 5170 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑗 ∈ 𝑍 ↦ (𝐹‘𝑗)) = (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥)))) |
37 | 31, 36 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝐹 = (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥)))) |
38 | 37 | seqeq3d 13657 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → seq𝑁( ∘f + , 𝐹) = seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))) |
39 | 38 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))‘𝑛)) |
40 | | mtest.s |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
41 | 40 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑆 ∈ 𝑉) |
42 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑛 ∈ 𝑍) |
43 | 42, 3 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑛 ∈ (ℤ≥‘𝑁)) |
44 | | elfzuz 13181 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ (ℤ≥‘𝑁)) |
45 | 44, 3 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑁...𝑛) → 𝑘 ∈ 𝑍) |
46 | 45 | ssriv 3921 |
. . . . . . . . . . . 12
⊢ (𝑁...𝑛) ⊆ 𝑍 |
47 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑛) ⊆ 𝑍) |
48 | 34 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑗)‘𝑥) ∈ ℂ) |
49 | 48 | anasss 466 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ (𝑗 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆)) → ((𝐹‘𝑗)‘𝑥) ∈ ℂ) |
50 | 41, 43, 47, 49 | seqof2 13709 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , (𝑗 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑗)‘𝑥))))‘𝑛) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))) |
51 | 39, 50 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑛) = (𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))) |
52 | 51 | fveq1d 6758 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = ((𝑥 ∈ 𝑆 ↦ (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑥)))‘𝑛))‘𝑧)) |
53 | 45 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑘 ∈ 𝑍) |
54 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) |
55 | 54 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝐹‘𝑗)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) |
56 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)) = (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)) |
57 | | fvex 6769 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑘)‘𝑧) ∈ V |
58 | 55, 56, 57 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
59 | 53, 58 | syl 17 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
60 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → 𝑧 ∈ 𝑆) |
61 | 34, 60 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)‘𝑧) ∈ ℂ) |
62 | 61 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)):𝑍⟶ℂ) |
63 | 62 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) ∈ ℂ) |
64 | 45, 63 | sylan2 592 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧))‘𝑘) ∈ ℂ) |
65 | 59, 64 | eqeltrrd 2840 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
66 | 59, 43, 65 | fsumser 15370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧) = (seq𝑁( + , (𝑗 ∈ 𝑍 ↦ ((𝐹‘𝑗)‘𝑧)))‘𝑛)) |
67 | 28, 52, 66 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧) = Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) |
68 | 67 | fveq2d 6760 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) = (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧))) |
69 | | fzfid 13621 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑛) ∈ Fin) |
70 | 69, 65 | fsumcl 15373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
71 | 70 | abscld 15076 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ∈ ℝ) |
72 | 65 | abscld 15076 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) |
73 | 69, 72 | fsumrecl 15374 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) |
74 | 20 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ ℝ) |
75 | 69, 65 | fsumabs 15441 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧))) |
76 | | simp-4l 779 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝜑) |
77 | 76, 53, 4 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) ∈ ℝ) |
78 | 69, 77 | fsumrecl 15374 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ∈ ℝ) |
79 | | simplr 765 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → 𝑧 ∈ 𝑆) |
80 | | mtest.l |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
81 | 76, 53, 79, 80 | syl12anc 833 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
82 | 69, 72, 77, 81 | fsumle 15439 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) |
83 | 78 | recnd 10934 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ∈ ℂ) |
84 | 83 | abscld 15076 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) ∈ ℝ) |
85 | 78 | leabsd 15054 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ≤ (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘))) |
86 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) = (𝑀‘𝑘)) |
87 | 76, 53, 5 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℝ ∧
∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑛)) → (𝑀‘𝑘) ∈ ℂ) |
88 | 86, 43, 87 | fsumser 15370 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) = (seq𝑁( + , 𝑀)‘𝑛)) |
89 | 88 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛))) |
90 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦) |
91 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (seq𝑁( + , 𝑀)‘𝑚) = (seq𝑁( + , 𝑀)‘𝑛)) |
92 | 91 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (abs‘(seq𝑁( + , 𝑀)‘𝑚)) = (abs‘(seq𝑁( + , 𝑀)‘𝑛))) |
93 | 92 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ↔ (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦)) |
94 | 93 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑚 ∈
𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) |
95 | 90, 94 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) |
96 | 95 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘(seq𝑁( + , 𝑀)‘𝑛)) ≤ 𝑦) |
97 | 89, 96 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘)) ≤ 𝑦) |
98 | 78, 84, 74, 85, 97 | letrd 11062 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(𝑀‘𝑘) ≤ 𝑦) |
99 | 73, 78, 74, 82, 98 | letrd 11062 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑛)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑦) |
100 | 71, 73, 74, 75, 99 | letrd 11062 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ (𝑁...𝑛)((𝐹‘𝑘)‘𝑧)) ≤ 𝑦) |
101 | 68, 100 | eqbrtrd 5092 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) |
102 | 101 | ralrimiva 3107 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) |
103 | | brralrspcev 5130 |
. . . 4
⊢ ((𝑦 ∈ ℝ ∧
∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥) |
104 | 20, 102, 103 | syl2anc 583 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((seq𝑁( ∘f + , 𝐹)‘𝑛)‘𝑧)) ≤ 𝑥) |
105 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) |
106 | 3, 11, 19, 104, 105 | ulmbdd 25462 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑚 ∈ 𝑍 (abs‘(seq𝑁( + , 𝑀)‘𝑚)) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) |
107 | 10, 106 | rexlimddv 3219 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) |