MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   GIF version

Theorem mplsubrglem 21962
Description: Lemma for mplsubrg 21963. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
mplsubrglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubrglem.z 0 = (0g𝑅)
mplsubrglem.p 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
mplsubrglem.t · = (.r𝑅)
mplsubrglem.x (𝜑𝑋𝑈)
mplsubrglem.y (𝜑𝑌𝑈)
Assertion
Ref Expression
mplsubrglem (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌   0 ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐷(𝑓)   𝑃(𝑓)   · (𝑓)   𝑈(𝑓)   𝑊(𝑓)

Proof of Theorem mplsubrglem
Dummy variables 𝑘 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . 3 (.r𝑆) = (.r𝑆)
4 mpllss.r . . 3 (𝜑𝑅 ∈ Ring)
5 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
6 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
75, 1, 6, 2mplbasss 21955 . . . 4 𝑈 ⊆ (Base‘𝑆)
8 mplsubrglem.x . . . 4 (𝜑𝑋𝑈)
97, 8sselid 3956 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
10 mplsubrglem.y . . . 4 (𝜑𝑌𝑈)
117, 10sselid 3956 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
121, 2, 3, 4, 9, 11psrmulcl 21904 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆))
13 ovexd 7438 . . 3 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ V)
141, 2psrelbasfun 21893 . . . 4 ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r𝑆)𝑌))
1512, 14syl 17 . . 3 (𝜑 → Fun (𝑋(.r𝑆)𝑌))
16 mplsubrglem.z . . . . 5 0 = (0g𝑅)
1716fvexi 6889 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
19 mplsubrglem.p . . . . 5 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
20 df-ima 5667 . . . . 5 ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
2119, 20eqtri 2758 . . . 4 𝐴 = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
225, 1, 2, 16, 6mplelbas 21949 . . . . . . . 8 (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 ))
2322simprbi 496 . . . . . . 7 (𝑋𝑈𝑋 finSupp 0 )
248, 23syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
255, 1, 2, 16, 6mplelbas 21949 . . . . . . . 8 (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 ))
2625simprbi 496 . . . . . . 7 (𝑌𝑈𝑌 finSupp 0 )
2710, 26syl 17 . . . . . 6 (𝜑𝑌 finSupp 0 )
28 fsuppxpfi 9395 . . . . . 6 ((𝑋 finSupp 0𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
2924, 27, 28syl2anc 584 . . . . 5 (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
30 ofmres 7981 . . . . . . 7 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓f + 𝑔))
31 ovex 7436 . . . . . . 7 (𝑓f + 𝑔) ∈ V
3230, 31fnmpoi 8067 . . . . . 6 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 ))
33 dffn4 6795 . . . . . 6 (( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
3432, 33mpbi 230 . . . . 5 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
35 fofi 9321 . . . . 5 ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3629, 34, 35sylancl 586 . . . 4 (𝜑 → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3721, 36eqeltrid 2838 . . 3 (𝜑𝐴 ∈ Fin)
38 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
39 mplsubrglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
401, 38, 39, 2, 12psrelbas 21892 . . . 4 (𝜑 → (𝑋(.r𝑆)𝑌):𝐷⟶(Base‘𝑅))
41 mplsubrglem.t . . . . . 6 · = (.r𝑅)
429adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑋 ∈ (Base‘𝑆))
4311adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑌 ∈ (Base‘𝑆))
44 eldifi 4106 . . . . . . 7 (𝑘 ∈ (𝐷𝐴) → 𝑘𝐷)
4544adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑘𝐷)
461, 2, 41, 3, 39, 42, 43, 45psrmulval 21902 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))))
474ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
485, 38, 6, 39, 10mplelf 21956 . . . . . . . . . . . 12 (𝜑𝑌:𝐷⟶(Base‘𝑅))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
50 ssrab2 4055 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
5145adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
52 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
53 eqid 2735 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
5439, 53psrbagconcl 21885 . . . . . . . . . . . . 13 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5551, 52, 54syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5650, 55sselid 3956 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
5749, 56ffvelcdmd 7074 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
5838, 41, 16ringlz 20251 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
5947, 57, 58syl2anc 584 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
60 oveq1 7410 . . . . . . . . . 10 ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ( 0 · (𝑌‘(𝑘f𝑥))))
6160eqeq1d 2737 . . . . . . . . 9 ((𝑋𝑥) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘f𝑥))) = 0 ))
6259, 61syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
635, 38, 6, 39, 8mplelf 21956 . . . . . . . . . . . 12 (𝜑𝑋:𝐷⟶(Base‘𝑅))
6463ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
6550, 52sselid 3956 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
6664, 65ffvelcdmd 7074 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
6738, 41, 16ringrz 20252 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥) · 0 ) = 0 )
6847, 66, 67syl2anc 584 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · 0 ) = 0 )
69 oveq2 7411 . . . . . . . . . 10 ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ((𝑋𝑥) · 0 ))
7069eqeq1d 2737 . . . . . . . . 9 ((𝑌‘(𝑘f𝑥)) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ((𝑋𝑥) · 0 ) = 0 ))
7168, 70syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
7239psrbagf 21876 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷𝑥:𝐼⟶ℕ0)
7365, 72syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
7473ffvelcdmda 7073 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
7539psrbagf 21876 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
7651, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘:𝐼⟶ℕ0)
7776ffvelcdmda 7073 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑘𝑛) ∈ ℕ0)
78 nn0cn 12509 . . . . . . . . . . . . . . . . 17 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
79 nn0cn 12509 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) ∈ ℕ0 → (𝑘𝑛) ∈ ℂ)
80 pncan3 11488 . . . . . . . . . . . . . . . . 17 (((𝑥𝑛) ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8178, 79, 80syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑥𝑛) ∈ ℕ0 ∧ (𝑘𝑛) ∈ ℕ0) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8274, 77, 81syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8382mpteq2dva 5214 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))) = (𝑛𝐼 ↦ (𝑘𝑛)))
84 mplsubg.i . . . . . . . . . . . . . . . 16 (𝜑𝐼𝑊)
8584ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑊)
86 ovexd 7438 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑘𝑛) − (𝑥𝑛)) ∈ V)
8773feqmptd 6946 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 = (𝑛𝐼 ↦ (𝑥𝑛)))
8876feqmptd 6946 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 = (𝑛𝐼 ↦ (𝑘𝑛)))
8985, 77, 74, 88, 87offval2 7689 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) = (𝑛𝐼 ↦ ((𝑘𝑛) − (𝑥𝑛))))
9085, 74, 86, 87, 89offval2 7689 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))))
9183, 90, 883eqtr4d 2780 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = 𝑘)
92 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 ∈ (𝐷𝐴))
9391, 92eqeltrd 2834 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) ∈ (𝐷𝐴))
9493eldifbd 3939 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
95 ovres 7571 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) = (𝑥f + (𝑘f𝑥)))
96 fnovrn 7580 . . . . . . . . . . . . . 14 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
9796, 21eleqtrrdi 2845 . . . . . . . . . . . . 13 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9832, 97mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9995, 98eqeltrrd 2835 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
10094, 99nsyl 140 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
101 ianor 983 . . . . . . . . . 10 (¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
102100, 101sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
103 eldif 3936 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 )))
104103baib 535 . . . . . . . . . . . 12 (𝑥𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
10565, 104syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
106 ssidd 3982 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
107 ovex 7436 . . . . . . . . . . . . . . 15 (ℕ0m 𝐼) ∈ V
10839, 107rabex2 5311 . . . . . . . . . . . . . 14 𝐷 ∈ V
109108a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
11017a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 0 ∈ V)
11164, 106, 109, 110suppssr 8192 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑥) = 0 )
112111ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋𝑥) = 0 ))
113105, 112sylbird 260 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋𝑥) = 0 ))
114 eldif 3936 . . . . . . . . . . . . 13 ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘f𝑥) ∈ 𝐷 ∧ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
115114baib 535 . . . . . . . . . . . 12 ((𝑘f𝑥) ∈ 𝐷 → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
11656, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
117 ssidd 3982 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ))
11849, 117, 109, 110suppssr 8192 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘f𝑥)) = 0 )
119118ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘f𝑥)) = 0 ))
120116, 119sylbird 260 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ (𝑘f𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘f𝑥)) = 0 ))
121113, 120orim12d 966 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 )))
122102, 121mpd 15 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 ))
12362, 71, 122mpjaod 860 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 )
124123mpteq2dva 5214 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 ))
125124oveq2d 7419 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )))
1264adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Ring)
127 ringmnd 20201 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
128126, 127syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Mnd)
12939psrbaglefi 21884 . . . . . . 7 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13045, 129syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13116gsumz 18812 . . . . . 6 ((𝑅 ∈ Mnd ∧ {𝑦𝐷𝑦r𝑘} ∈ Fin) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
132128, 130, 131syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
13346, 125, 1323eqtrd 2774 . . . 4 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = 0 )
13440, 133suppss 8191 . . 3 (𝜑 → ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)
135 suppssfifsupp 9390 . . 3 ((((𝑋(.r𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r𝑆)𝑌) finSupp 0 )
13613, 15, 18, 37, 134, 135syl32anc 1380 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) finSupp 0 )
1375, 1, 2, 16, 6mplelbas 21949 . 2 ((𝑋(.r𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r𝑆)𝑌) finSupp 0 ))
13812, 136, 137sylanbrc 583 1 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cdif 3923  wss 3926   class class class wbr 5119  cmpt 5201   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656  cima 5657  Fun wfun 6524   Fn wfn 6525  wf 6526  ontowfo 6528  cfv 6530  (class class class)co 7403  f cof 7667  r cofr 7668   supp csupp 8157  m cmap 8838  Fincfn 8957   finSupp cfsupp 9371  cc 11125   + caddc 11130  cle 11268  cmin 11464  cn 12238  0cn0 12499  Basecbs 17226  .rcmulr 17270  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  Ringcrg 20191   mPwSer cmps 21862   mPoly cmpl 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-tset 17288  df-0g 17453  df-gsum 17454  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-psr 21867  df-mpl 21869
This theorem is referenced by:  mplsubrg  21963
  Copyright terms: Public domain W3C validator