MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   GIF version

Theorem mplsubrglem 21120
Description: Lemma for mplsubrg 21121. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
mplsubrglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubrglem.z 0 = (0g𝑅)
mplsubrglem.p 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
mplsubrglem.t · = (.r𝑅)
mplsubrglem.x (𝜑𝑋𝑈)
mplsubrglem.y (𝜑𝑌𝑈)
Assertion
Ref Expression
mplsubrglem (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌   0 ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐷(𝑓)   𝑃(𝑓)   · (𝑓)   𝑈(𝑓)   𝑊(𝑓)

Proof of Theorem mplsubrglem
Dummy variables 𝑘 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2738 . . 3 (.r𝑆) = (.r𝑆)
4 mpllss.r . . 3 (𝜑𝑅 ∈ Ring)
5 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
6 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
75, 1, 6, 2mplbasss 21113 . . . 4 𝑈 ⊆ (Base‘𝑆)
8 mplsubrglem.x . . . 4 (𝜑𝑋𝑈)
97, 8sselid 3915 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
10 mplsubrglem.y . . . 4 (𝜑𝑌𝑈)
117, 10sselid 3915 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
121, 2, 3, 4, 9, 11psrmulcl 21067 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆))
13 ovexd 7290 . . 3 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ V)
141, 2psrelbasfun 21059 . . . 4 ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r𝑆)𝑌))
1512, 14syl 17 . . 3 (𝜑 → Fun (𝑋(.r𝑆)𝑌))
16 mplsubrglem.z . . . . 5 0 = (0g𝑅)
1716fvexi 6770 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
19 mplsubrglem.p . . . . 5 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
20 df-ima 5593 . . . . 5 ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
2119, 20eqtri 2766 . . . 4 𝐴 = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
225, 1, 2, 16, 6mplelbas 21109 . . . . . . . 8 (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 ))
2322simprbi 496 . . . . . . 7 (𝑋𝑈𝑋 finSupp 0 )
248, 23syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
255, 1, 2, 16, 6mplelbas 21109 . . . . . . . 8 (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 ))
2625simprbi 496 . . . . . . 7 (𝑌𝑈𝑌 finSupp 0 )
2710, 26syl 17 . . . . . 6 (𝜑𝑌 finSupp 0 )
28 fsuppxpfi 9075 . . . . . 6 ((𝑋 finSupp 0𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
2924, 27, 28syl2anc 583 . . . . 5 (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
30 ofmres 7800 . . . . . . 7 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓f + 𝑔))
31 ovex 7288 . . . . . . 7 (𝑓f + 𝑔) ∈ V
3230, 31fnmpoi 7883 . . . . . 6 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 ))
33 dffn4 6678 . . . . . 6 (( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
3432, 33mpbi 229 . . . . 5 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
35 fofi 9035 . . . . 5 ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3629, 34, 35sylancl 585 . . . 4 (𝜑 → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3721, 36eqeltrid 2843 . . 3 (𝜑𝐴 ∈ Fin)
38 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
39 mplsubrglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
401, 38, 39, 2, 12psrelbas 21058 . . . 4 (𝜑 → (𝑋(.r𝑆)𝑌):𝐷⟶(Base‘𝑅))
41 mplsubrglem.t . . . . . 6 · = (.r𝑅)
429adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑋 ∈ (Base‘𝑆))
4311adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑌 ∈ (Base‘𝑆))
44 eldifi 4057 . . . . . . 7 (𝑘 ∈ (𝐷𝐴) → 𝑘𝐷)
4544adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑘𝐷)
461, 2, 41, 3, 39, 42, 43, 45psrmulval 21065 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))))
474ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
485, 38, 6, 39, 10mplelf 21114 . . . . . . . . . . . 12 (𝜑𝑌:𝐷⟶(Base‘𝑅))
4948ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
50 ssrab2 4009 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
5145adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
52 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
53 eqid 2738 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
5439, 53psrbagconcl 21047 . . . . . . . . . . . . 13 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5551, 52, 54syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5650, 55sselid 3915 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
5749, 56ffvelrnd 6944 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
5838, 41, 16ringlz 19741 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
5947, 57, 58syl2anc 583 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
60 oveq1 7262 . . . . . . . . . 10 ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ( 0 · (𝑌‘(𝑘f𝑥))))
6160eqeq1d 2740 . . . . . . . . 9 ((𝑋𝑥) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘f𝑥))) = 0 ))
6259, 61syl5ibrcom 246 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
635, 38, 6, 39, 8mplelf 21114 . . . . . . . . . . . 12 (𝜑𝑋:𝐷⟶(Base‘𝑅))
6463ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
6550, 52sselid 3915 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
6664, 65ffvelrnd 6944 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
6738, 41, 16ringrz 19742 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥) · 0 ) = 0 )
6847, 66, 67syl2anc 583 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · 0 ) = 0 )
69 oveq2 7263 . . . . . . . . . 10 ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ((𝑋𝑥) · 0 ))
7069eqeq1d 2740 . . . . . . . . 9 ((𝑌‘(𝑘f𝑥)) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ((𝑋𝑥) · 0 ) = 0 ))
7168, 70syl5ibrcom 246 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
7239psrbagf 21031 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷𝑥:𝐼⟶ℕ0)
7365, 72syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
7473ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
7539psrbagf 21031 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
7651, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘:𝐼⟶ℕ0)
7776ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑘𝑛) ∈ ℕ0)
78 nn0cn 12173 . . . . . . . . . . . . . . . . 17 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
79 nn0cn 12173 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) ∈ ℕ0 → (𝑘𝑛) ∈ ℂ)
80 pncan3 11159 . . . . . . . . . . . . . . . . 17 (((𝑥𝑛) ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8178, 79, 80syl2an 595 . . . . . . . . . . . . . . . 16 (((𝑥𝑛) ∈ ℕ0 ∧ (𝑘𝑛) ∈ ℕ0) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8274, 77, 81syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8382mpteq2dva 5170 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))) = (𝑛𝐼 ↦ (𝑘𝑛)))
84 mplsubg.i . . . . . . . . . . . . . . . 16 (𝜑𝐼𝑊)
8584ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑊)
86 ovexd 7290 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑘𝑛) − (𝑥𝑛)) ∈ V)
8773feqmptd 6819 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 = (𝑛𝐼 ↦ (𝑥𝑛)))
8876feqmptd 6819 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 = (𝑛𝐼 ↦ (𝑘𝑛)))
8985, 77, 74, 88, 87offval2 7531 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) = (𝑛𝐼 ↦ ((𝑘𝑛) − (𝑥𝑛))))
9085, 74, 86, 87, 89offval2 7531 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))))
9183, 90, 883eqtr4d 2788 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = 𝑘)
92 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 ∈ (𝐷𝐴))
9391, 92eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) ∈ (𝐷𝐴))
9493eldifbd 3896 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
95 ovres 7416 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) = (𝑥f + (𝑘f𝑥)))
96 fnovrn 7425 . . . . . . . . . . . . . 14 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
9796, 21eleqtrrdi 2850 . . . . . . . . . . . . 13 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9832, 97mp3an1 1446 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9995, 98eqeltrrd 2840 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
10094, 99nsyl 140 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
101 ianor 978 . . . . . . . . . 10 (¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
102100, 101sylib 217 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
103 eldif 3893 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 )))
104103baib 535 . . . . . . . . . . . 12 (𝑥𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
10565, 104syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
106 ssidd 3940 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
107 ovex 7288 . . . . . . . . . . . . . . 15 (ℕ0m 𝐼) ∈ V
10839, 107rabex2 5253 . . . . . . . . . . . . . 14 𝐷 ∈ V
109108a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
11017a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 0 ∈ V)
11164, 106, 109, 110suppssr 7983 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑥) = 0 )
112111ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋𝑥) = 0 ))
113105, 112sylbird 259 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋𝑥) = 0 ))
114 eldif 3893 . . . . . . . . . . . . 13 ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘f𝑥) ∈ 𝐷 ∧ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
115114baib 535 . . . . . . . . . . . 12 ((𝑘f𝑥) ∈ 𝐷 → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
11656, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
117 ssidd 3940 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ))
11849, 117, 109, 110suppssr 7983 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘f𝑥)) = 0 )
119118ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘f𝑥)) = 0 ))
120116, 119sylbird 259 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ (𝑘f𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘f𝑥)) = 0 ))
121113, 120orim12d 961 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 )))
122102, 121mpd 15 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 ))
12362, 71, 122mpjaod 856 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 )
124123mpteq2dva 5170 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 ))
125124oveq2d 7271 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )))
1264adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Ring)
127 ringmnd 19708 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
128126, 127syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Mnd)
12939psrbaglefi 21045 . . . . . . 7 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13045, 129syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13116gsumz 18389 . . . . . 6 ((𝑅 ∈ Mnd ∧ {𝑦𝐷𝑦r𝑘} ∈ Fin) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
132128, 130, 131syl2anc 583 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
13346, 125, 1323eqtrd 2782 . . . 4 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = 0 )
13440, 133suppss 7981 . . 3 (𝜑 → ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)
135 suppssfifsupp 9073 . . 3 ((((𝑋(.r𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r𝑆)𝑌) finSupp 0 )
13613, 15, 18, 37, 134, 135syl32anc 1376 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) finSupp 0 )
1375, 1, 2, 16, 6mplelbas 21109 . 2 ((𝑋(.r𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r𝑆)𝑌) finSupp 0 ))
13812, 136, 137sylanbrc 582 1 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  wss 3883   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800   + caddc 10805  cle 10941  cmin 11135  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  Ringcrg 19698   mPwSer cmps 21017   mPoly cmpl 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022  df-mpl 21024
This theorem is referenced by:  mplsubrg  21121
  Copyright terms: Public domain W3C validator