MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   GIF version

Theorem mplsubrglem 21942
Description: Lemma for mplsubrg 21943. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
mplsubrglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubrglem.z 0 = (0g𝑅)
mplsubrglem.p 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
mplsubrglem.t · = (.r𝑅)
mplsubrglem.x (𝜑𝑋𝑈)
mplsubrglem.y (𝜑𝑌𝑈)
Assertion
Ref Expression
mplsubrglem (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌   0 ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐷(𝑓)   𝑃(𝑓)   · (𝑓)   𝑈(𝑓)   𝑊(𝑓)

Proof of Theorem mplsubrglem
Dummy variables 𝑘 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2733 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2733 . . 3 (.r𝑆) = (.r𝑆)
4 mpllss.r . . 3 (𝜑𝑅 ∈ Ring)
5 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
6 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
75, 1, 6, 2mplbasss 21935 . . . 4 𝑈 ⊆ (Base‘𝑆)
8 mplsubrglem.x . . . 4 (𝜑𝑋𝑈)
97, 8sselid 3928 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
10 mplsubrglem.y . . . 4 (𝜑𝑌𝑈)
117, 10sselid 3928 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
121, 2, 3, 4, 9, 11psrmulcl 21885 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆))
13 ovexd 7387 . . 3 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ V)
141, 2psrelbasfun 21874 . . . 4 ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r𝑆)𝑌))
1512, 14syl 17 . . 3 (𝜑 → Fun (𝑋(.r𝑆)𝑌))
16 mplsubrglem.z . . . . 5 0 = (0g𝑅)
1716fvexi 6842 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
19 mplsubrglem.p . . . . 5 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
20 df-ima 5632 . . . . 5 ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
2119, 20eqtri 2756 . . . 4 𝐴 = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
225, 1, 2, 16, 6mplelbas 21929 . . . . . . . 8 (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 ))
2322simprbi 496 . . . . . . 7 (𝑋𝑈𝑋 finSupp 0 )
248, 23syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
255, 1, 2, 16, 6mplelbas 21929 . . . . . . . 8 (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 ))
2625simprbi 496 . . . . . . 7 (𝑌𝑈𝑌 finSupp 0 )
2710, 26syl 17 . . . . . 6 (𝜑𝑌 finSupp 0 )
28 fsuppxpfi 9276 . . . . . 6 ((𝑋 finSupp 0𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
2924, 27, 28syl2anc 584 . . . . 5 (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
30 ofmres 7922 . . . . . . 7 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓f + 𝑔))
31 ovex 7385 . . . . . . 7 (𝑓f + 𝑔) ∈ V
3230, 31fnmpoi 8008 . . . . . 6 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 ))
33 dffn4 6746 . . . . . 6 (( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
3432, 33mpbi 230 . . . . 5 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
35 fofi 9204 . . . . 5 ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3629, 34, 35sylancl 586 . . . 4 (𝜑 → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3721, 36eqeltrid 2837 . . 3 (𝜑𝐴 ∈ Fin)
38 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
39 mplsubrglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
401, 38, 39, 2, 12psrelbas 21873 . . . 4 (𝜑 → (𝑋(.r𝑆)𝑌):𝐷⟶(Base‘𝑅))
41 mplsubrglem.t . . . . . 6 · = (.r𝑅)
429adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑋 ∈ (Base‘𝑆))
4311adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑌 ∈ (Base‘𝑆))
44 eldifi 4080 . . . . . . 7 (𝑘 ∈ (𝐷𝐴) → 𝑘𝐷)
4544adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑘𝐷)
461, 2, 41, 3, 39, 42, 43, 45psrmulval 21883 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))))
474ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
485, 38, 6, 39, 10mplelf 21936 . . . . . . . . . . . 12 (𝜑𝑌:𝐷⟶(Base‘𝑅))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
50 ssrab2 4029 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
5145adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
52 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
53 eqid 2733 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
5439, 53psrbagconcl 21866 . . . . . . . . . . . . 13 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5551, 52, 54syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5650, 55sselid 3928 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
5749, 56ffvelcdmd 7024 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
5838, 41, 16ringlz 20213 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
5947, 57, 58syl2anc 584 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
60 oveq1 7359 . . . . . . . . . 10 ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ( 0 · (𝑌‘(𝑘f𝑥))))
6160eqeq1d 2735 . . . . . . . . 9 ((𝑋𝑥) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘f𝑥))) = 0 ))
6259, 61syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
635, 38, 6, 39, 8mplelf 21936 . . . . . . . . . . . 12 (𝜑𝑋:𝐷⟶(Base‘𝑅))
6463ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
6550, 52sselid 3928 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
6664, 65ffvelcdmd 7024 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
6738, 41, 16ringrz 20214 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥) · 0 ) = 0 )
6847, 66, 67syl2anc 584 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · 0 ) = 0 )
69 oveq2 7360 . . . . . . . . . 10 ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ((𝑋𝑥) · 0 ))
7069eqeq1d 2735 . . . . . . . . 9 ((𝑌‘(𝑘f𝑥)) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ((𝑋𝑥) · 0 ) = 0 ))
7168, 70syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
7239psrbagf 21857 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷𝑥:𝐼⟶ℕ0)
7365, 72syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
7473ffvelcdmda 7023 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
7539psrbagf 21857 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
7651, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘:𝐼⟶ℕ0)
7776ffvelcdmda 7023 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑘𝑛) ∈ ℕ0)
78 nn0cn 12398 . . . . . . . . . . . . . . . . 17 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
79 nn0cn 12398 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) ∈ ℕ0 → (𝑘𝑛) ∈ ℂ)
80 pncan3 11375 . . . . . . . . . . . . . . . . 17 (((𝑥𝑛) ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8178, 79, 80syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑥𝑛) ∈ ℕ0 ∧ (𝑘𝑛) ∈ ℕ0) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8274, 77, 81syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8382mpteq2dva 5186 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))) = (𝑛𝐼 ↦ (𝑘𝑛)))
84 mplsubg.i . . . . . . . . . . . . . . . 16 (𝜑𝐼𝑊)
8584ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑊)
86 ovexd 7387 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑘𝑛) − (𝑥𝑛)) ∈ V)
8773feqmptd 6896 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 = (𝑛𝐼 ↦ (𝑥𝑛)))
8876feqmptd 6896 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 = (𝑛𝐼 ↦ (𝑘𝑛)))
8985, 77, 74, 88, 87offval2 7636 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) = (𝑛𝐼 ↦ ((𝑘𝑛) − (𝑥𝑛))))
9085, 74, 86, 87, 89offval2 7636 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))))
9183, 90, 883eqtr4d 2778 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = 𝑘)
92 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 ∈ (𝐷𝐴))
9391, 92eqeltrd 2833 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) ∈ (𝐷𝐴))
9493eldifbd 3911 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
95 ovres 7518 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) = (𝑥f + (𝑘f𝑥)))
96 fnovrn 7527 . . . . . . . . . . . . . 14 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
9796, 21eleqtrrdi 2844 . . . . . . . . . . . . 13 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9832, 97mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9995, 98eqeltrrd 2834 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
10094, 99nsyl 140 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
101 ianor 983 . . . . . . . . . 10 (¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
102100, 101sylib 218 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
103 eldif 3908 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 )))
104103baib 535 . . . . . . . . . . . 12 (𝑥𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
10565, 104syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
106 ssidd 3954 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
107 ovex 7385 . . . . . . . . . . . . . . 15 (ℕ0m 𝐼) ∈ V
10839, 107rabex2 5281 . . . . . . . . . . . . . 14 𝐷 ∈ V
109108a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
11017a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 0 ∈ V)
11164, 106, 109, 110suppssr 8131 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑥) = 0 )
112111ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋𝑥) = 0 ))
113105, 112sylbird 260 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋𝑥) = 0 ))
114 eldif 3908 . . . . . . . . . . . . 13 ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘f𝑥) ∈ 𝐷 ∧ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
115114baib 535 . . . . . . . . . . . 12 ((𝑘f𝑥) ∈ 𝐷 → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
11656, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
117 ssidd 3954 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ))
11849, 117, 109, 110suppssr 8131 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘f𝑥)) = 0 )
119118ex 412 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘f𝑥)) = 0 ))
120116, 119sylbird 260 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ (𝑘f𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘f𝑥)) = 0 ))
121113, 120orim12d 966 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 )))
122102, 121mpd 15 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 ))
12362, 71, 122mpjaod 860 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 )
124123mpteq2dva 5186 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 ))
125124oveq2d 7368 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )))
1264adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Ring)
127 ringmnd 20163 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
128126, 127syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Mnd)
12939psrbaglefi 21865 . . . . . . 7 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13045, 129syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13116gsumz 18746 . . . . . 6 ((𝑅 ∈ Mnd ∧ {𝑦𝐷𝑦r𝑘} ∈ Fin) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
132128, 130, 131syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
13346, 125, 1323eqtrd 2772 . . . 4 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = 0 )
13440, 133suppss 8130 . . 3 (𝜑 → ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)
135 suppssfifsupp 9271 . . 3 ((((𝑋(.r𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r𝑆)𝑌) finSupp 0 )
13613, 15, 18, 37, 134, 135syl32anc 1380 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) finSupp 0 )
1375, 1, 2, 16, 6mplelbas 21929 . 2 ((𝑋(.r𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r𝑆)𝑌) finSupp 0 ))
13812, 136, 137sylanbrc 583 1 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  wss 3898   class class class wbr 5093  cmpt 5174   × cxp 5617  ccnv 5618  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  cc 11011   + caddc 11016  cle 11154  cmin 11351  cn 12132  0cn0 12388  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644  Ringcrg 20153   mPwSer cmps 21843   mPoly cmpl 21845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-psr 21848  df-mpl 21850
This theorem is referenced by:  mplsubrg  21943
  Copyright terms: Public domain W3C validator