Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   GIF version

Theorem mplsubrglem 20205
 Description: Lemma for mplsubrg 20206. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
mplsubrglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubrglem.z 0 = (0g𝑅)
mplsubrglem.p 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
mplsubrglem.t · = (.r𝑅)
mplsubrglem.x (𝜑𝑋𝑈)
mplsubrglem.y (𝜑𝑌𝑈)
Assertion
Ref Expression
mplsubrglem (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌   0 ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐷(𝑓)   𝑃(𝑓)   · (𝑓)   𝑈(𝑓)   𝑊(𝑓)

Proof of Theorem mplsubrglem
Dummy variables 𝑘 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2824 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2824 . . 3 (.r𝑆) = (.r𝑆)
4 mpllss.r . . 3 (𝜑𝑅 ∈ Ring)
5 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
6 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
75, 1, 6, 2mplbasss 20198 . . . 4 𝑈 ⊆ (Base‘𝑆)
8 mplsubrglem.x . . . 4 (𝜑𝑋𝑈)
97, 8sseldi 3949 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
10 mplsubrglem.y . . . 4 (𝜑𝑌𝑈)
117, 10sseldi 3949 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
121, 2, 3, 4, 9, 11psrmulcl 20154 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆))
13 ovexd 7173 . . 3 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ V)
141, 2psrelbasfun 20146 . . . 4 ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r𝑆)𝑌))
1512, 14syl 17 . . 3 (𝜑 → Fun (𝑋(.r𝑆)𝑌))
16 mplsubrglem.z . . . . 5 0 = (0g𝑅)
1716fvexi 6665 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
19 mplsubrglem.p . . . . 5 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
20 df-ima 5549 . . . . 5 ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
2119, 20eqtri 2847 . . . 4 𝐴 = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
225, 1, 2, 16, 6mplelbas 20196 . . . . . . . 8 (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 ))
2322simprbi 500 . . . . . . 7 (𝑋𝑈𝑋 finSupp 0 )
248, 23syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
255, 1, 2, 16, 6mplelbas 20196 . . . . . . . 8 (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 ))
2625simprbi 500 . . . . . . 7 (𝑌𝑈𝑌 finSupp 0 )
2710, 26syl 17 . . . . . 6 (𝜑𝑌 finSupp 0 )
28 fsuppxpfi 8834 . . . . . 6 ((𝑋 finSupp 0𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
2924, 27, 28syl2anc 587 . . . . 5 (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
30 ofmres 7668 . . . . . . 7 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓f + 𝑔))
31 ovex 7171 . . . . . . 7 (𝑓f + 𝑔) ∈ V
3230, 31fnmpoi 7751 . . . . . 6 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 ))
33 dffn4 6577 . . . . . 6 (( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
3432, 33mpbi 233 . . . . 5 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
35 fofi 8794 . . . . 5 ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3629, 34, 35sylancl 589 . . . 4 (𝜑 → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3721, 36eqeltrid 2920 . . 3 (𝜑𝐴 ∈ Fin)
38 eqid 2824 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
39 mplsubrglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
401, 38, 39, 2, 12psrelbas 20145 . . . 4 (𝜑 → (𝑋(.r𝑆)𝑌):𝐷⟶(Base‘𝑅))
41 mplsubrglem.t . . . . . 6 · = (.r𝑅)
429adantr 484 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑋 ∈ (Base‘𝑆))
4311adantr 484 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑌 ∈ (Base‘𝑆))
44 eldifi 4087 . . . . . . 7 (𝑘 ∈ (𝐷𝐴) → 𝑘𝐷)
4544adantl 485 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑘𝐷)
461, 2, 41, 3, 39, 42, 43, 45psrmulval 20152 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))))
474ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
485, 38, 6, 39, 10mplelf 20199 . . . . . . . . . . . 12 (𝜑𝑌:𝐷⟶(Base‘𝑅))
4948ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
50 ssrab2 4040 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
51 mplsubg.i . . . . . . . . . . . . . 14 (𝜑𝐼𝑊)
5251ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑊)
5345adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
54 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
55 eqid 2824 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
5639, 55psrbagconcl 20139 . . . . . . . . . . . . 13 ((𝐼𝑊𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5752, 53, 54, 56syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5850, 57sseldi 3949 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
5949, 58ffvelrnd 6833 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
6038, 41, 16ringlz 19326 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
6147, 59, 60syl2anc 587 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
62 oveq1 7145 . . . . . . . . . 10 ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ( 0 · (𝑌‘(𝑘f𝑥))))
6362eqeq1d 2826 . . . . . . . . 9 ((𝑋𝑥) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘f𝑥))) = 0 ))
6461, 63syl5ibrcom 250 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
655, 38, 6, 39, 8mplelf 20199 . . . . . . . . . . . 12 (𝜑𝑋:𝐷⟶(Base‘𝑅))
6665ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
6750, 54sseldi 3949 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
6866, 67ffvelrnd 6833 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
6938, 41, 16ringrz 19327 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥) · 0 ) = 0 )
7047, 68, 69syl2anc 587 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · 0 ) = 0 )
71 oveq2 7146 . . . . . . . . . 10 ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ((𝑋𝑥) · 0 ))
7271eqeq1d 2826 . . . . . . . . 9 ((𝑌‘(𝑘f𝑥)) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ((𝑋𝑥) · 0 ) = 0 ))
7370, 72syl5ibrcom 250 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
7439psrbagf 20131 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7552, 67, 74syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
7675ffvelrnda 6832 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
7739psrbagf 20131 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
7852, 53, 77syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘:𝐼⟶ℕ0)
7978ffvelrnda 6832 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑘𝑛) ∈ ℕ0)
80 nn0cn 11893 . . . . . . . . . . . . . . . . 17 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
81 nn0cn 11893 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) ∈ ℕ0 → (𝑘𝑛) ∈ ℂ)
82 pncan3 10879 . . . . . . . . . . . . . . . . 17 (((𝑥𝑛) ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8380, 81, 82syl2an 598 . . . . . . . . . . . . . . . 16 (((𝑥𝑛) ∈ ℕ0 ∧ (𝑘𝑛) ∈ ℕ0) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8476, 79, 83syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8584mpteq2dva 5142 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))) = (𝑛𝐼 ↦ (𝑘𝑛)))
86 ovexd 7173 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑘𝑛) − (𝑥𝑛)) ∈ V)
8775feqmptd 6714 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 = (𝑛𝐼 ↦ (𝑥𝑛)))
8878feqmptd 6714 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 = (𝑛𝐼 ↦ (𝑘𝑛)))
8952, 79, 76, 88, 87offval2 7409 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) = (𝑛𝐼 ↦ ((𝑘𝑛) − (𝑥𝑛))))
9052, 76, 86, 87, 89offval2 7409 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))))
9185, 90, 883eqtr4d 2869 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = 𝑘)
92 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 ∈ (𝐷𝐴))
9391, 92eqeltrd 2916 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) ∈ (𝐷𝐴))
9493eldifbd 3931 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
95 ovres 7297 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) = (𝑥f + (𝑘f𝑥)))
96 fnovrn 7306 . . . . . . . . . . . . . 14 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
9796, 21eleqtrrdi 2927 . . . . . . . . . . . . 13 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9832, 97mp3an1 1445 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9995, 98eqeltrrd 2917 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
10094, 99nsyl 142 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
101 ianor 979 . . . . . . . . . 10 (¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
102100, 101sylib 221 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
103 eldif 3928 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 )))
104103baib 539 . . . . . . . . . . . 12 (𝑥𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
10567, 104syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
106 ssidd 3974 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
107 ovex 7171 . . . . . . . . . . . . . . 15 (ℕ0m 𝐼) ∈ V
10839, 107rabex2 5218 . . . . . . . . . . . . . 14 𝐷 ∈ V
109108a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
11017a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 0 ∈ V)
11166, 106, 109, 110suppssr 7844 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑥) = 0 )
112111ex 416 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋𝑥) = 0 ))
113105, 112sylbird 263 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋𝑥) = 0 ))
114 eldif 3928 . . . . . . . . . . . . 13 ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘f𝑥) ∈ 𝐷 ∧ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
115114baib 539 . . . . . . . . . . . 12 ((𝑘f𝑥) ∈ 𝐷 → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
11658, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
117 ssidd 3974 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ))
11849, 117, 109, 110suppssr 7844 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘f𝑥)) = 0 )
119118ex 416 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘f𝑥)) = 0 ))
120116, 119sylbird 263 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ (𝑘f𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘f𝑥)) = 0 ))
121113, 120orim12d 962 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 )))
122102, 121mpd 15 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 ))
12364, 73, 122mpjaod 857 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 )
124123mpteq2dva 5142 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 ))
125124oveq2d 7154 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )))
1264adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Ring)
127 ringmnd 19295 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
128126, 127syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Mnd)
12939psrbaglefi 20138 . . . . . . 7 ((𝐼𝑊𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13051, 44, 129syl2an 598 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13116gsumz 17989 . . . . . 6 ((𝑅 ∈ Mnd ∧ {𝑦𝐷𝑦r𝑘} ∈ Fin) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
132128, 130, 131syl2anc 587 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
13346, 125, 1323eqtrd 2863 . . . 4 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = 0 )
13440, 133suppss 7843 . . 3 (𝜑 → ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)
135 suppssfifsupp 8832 . . 3 ((((𝑋(.r𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r𝑆)𝑌) finSupp 0 )
13613, 15, 18, 37, 134, 135syl32anc 1375 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) finSupp 0 )
1375, 1, 2, 16, 6mplelbas 20196 . 2 ((𝑋(.r𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r𝑆)𝑌) finSupp 0 ))
13812, 136, 137sylanbrc 586 1 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  {crab 3136  Vcvv 3479   ∖ cdif 3915   ⊆ wss 3918   class class class wbr 5047   ↦ cmpt 5127   × cxp 5534  ◡ccnv 5535  ran crn 5537   ↾ cres 5538   “ cima 5539  Fun wfun 6330   Fn wfn 6331  ⟶wf 6332  –onto→wfo 6334  ‘cfv 6336  (class class class)co 7138   ∘f cof 7390   ∘r cofr 7391   supp csupp 7813   ↑m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  ℂcc 10520   + caddc 10525   ≤ cle 10661   − cmin 10855  ℕcn 11623  ℕ0cn0 11883  Basecbs 16472  .rcmulr 16555  0gc0g 16702   Σg cgsu 16703  Mndcmnd 17900  Ringcrg 19286   mPwSer cmps 20117   mPoly cmpl 20119 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-ofr 7393  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-seq 13363  df-hash 13685  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-sca 16570  df-vsca 16571  df-tset 16573  df-0g 16704  df-gsum 16705  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-minusg 18096  df-cntz 18436  df-cmn 18897  df-abl 18898  df-mgp 19229  df-ur 19241  df-ring 19288  df-psr 20122  df-mpl 20124 This theorem is referenced by:  mplsubrg  20206
 Copyright terms: Public domain W3C validator