| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnioo | Structured version Visualization version GIF version | ||
| Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| unirnioo | ⊢ ℝ = ∪ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioomax 13325 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
| 2 | ioof 13350 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 3 | ffn 6652 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
| 5 | mnfxr 11172 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 6 | pnfxr 11169 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 7 | fnovrn 7524 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
| 9 | 1, 8 | eqeltrri 2825 | . . 3 ⊢ ℝ ∈ ran (,) |
| 10 | elssuni 4888 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
| 12 | frn 6659 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
| 14 | sspwuni 5049 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
| 15 | 13, 14 | mpbi 230 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
| 16 | 11, 15 | eqssi 3952 | 1 ⊢ ℝ = ∪ ran (,) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 × cxp 5617 ran crn 5620 Fn wfn 6477 ⟶wf 6478 (class class class)co 7349 ℝcr 11008 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 (,)cioo 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 |
| This theorem is referenced by: pnfnei 23105 mnfnei 23106 uniretop 24648 tgioo 24682 xrtgioo 24693 bndth 24855 relowlssretop 37347 relowlpssretop 37348 mblfinlem3 37649 mblfinlem4 37650 ismblfin 37651 |
| Copyright terms: Public domain | W3C validator |