Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unirnioo | Structured version Visualization version GIF version |
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
unirnioo | ⊢ ℝ = ∪ ran (,) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax 12859 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
2 | ioof 12884 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 6502 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | mnfxr 10741 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
6 | pnfxr 10738 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
7 | fnovrn 7324 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
8 | 4, 5, 6, 7 | mp3an 1458 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
9 | 1, 8 | eqeltrri 2849 | . . 3 ⊢ ℝ ∈ ran (,) |
10 | elssuni 4833 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
12 | frn 6508 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
14 | sspwuni 4990 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
15 | 13, 14 | mpbi 233 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
16 | 11, 15 | eqssi 3910 | 1 ⊢ ℝ = ∪ ran (,) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 𝒫 cpw 4497 ∪ cuni 4801 × cxp 5525 ran crn 5528 Fn wfn 6334 ⟶wf 6335 (class class class)co 7155 ℝcr 10579 +∞cpnf 10715 -∞cmnf 10716 ℝ*cxr 10717 (,)cioo 12784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-ioo 12788 |
This theorem is referenced by: pnfnei 21925 mnfnei 21926 uniretop 23469 tgioo 23502 xrtgioo 23512 bndth 23664 relowlssretop 35086 relowlpssretop 35087 mblfinlem3 35402 mblfinlem4 35403 ismblfin 35404 |
Copyright terms: Public domain | W3C validator |