Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unirnioo | Structured version Visualization version GIF version |
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
unirnioo | ⊢ ℝ = ∪ ran (,) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax 13154 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
2 | ioof 13179 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 6600 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | mnfxr 11032 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
6 | pnfxr 11029 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
7 | fnovrn 7447 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
8 | 4, 5, 6, 7 | mp3an 1460 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
9 | 1, 8 | eqeltrri 2836 | . . 3 ⊢ ℝ ∈ ran (,) |
10 | elssuni 4871 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
12 | frn 6607 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
14 | sspwuni 5029 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
15 | 13, 14 | mpbi 229 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
16 | 11, 15 | eqssi 3937 | 1 ⊢ ℝ = ∪ ran (,) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 × cxp 5587 ran crn 5590 Fn wfn 6428 ⟶wf 6429 (class class class)co 7275 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 (,)cioo 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 |
This theorem is referenced by: pnfnei 22371 mnfnei 22372 uniretop 23926 tgioo 23959 xrtgioo 23969 bndth 24121 relowlssretop 35534 relowlpssretop 35535 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 |
Copyright terms: Public domain | W3C validator |