| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnioo | Structured version Visualization version GIF version | ||
| Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| unirnioo | ⊢ ℝ = ∪ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioomax 13444 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
| 2 | ioof 13469 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 3 | ffn 6711 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
| 5 | mnfxr 11297 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 6 | pnfxr 11294 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 7 | fnovrn 7587 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
| 9 | 1, 8 | eqeltrri 2832 | . . 3 ⊢ ℝ ∈ ran (,) |
| 10 | elssuni 4918 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
| 12 | frn 6718 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
| 14 | sspwuni 5081 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
| 15 | 13, 14 | mpbi 230 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
| 16 | 11, 15 | eqssi 3980 | 1 ⊢ ℝ = ∪ ran (,) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 × cxp 5657 ran crn 5660 Fn wfn 6531 ⟶wf 6532 (class class class)co 7410 ℝcr 11133 +∞cpnf 11271 -∞cmnf 11272 ℝ*cxr 11273 (,)cioo 13367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioo 13371 |
| This theorem is referenced by: pnfnei 23163 mnfnei 23164 uniretop 24706 tgioo 24740 xrtgioo 24751 bndth 24913 relowlssretop 37386 relowlpssretop 37387 mblfinlem3 37688 mblfinlem4 37689 ismblfin 37690 |
| Copyright terms: Public domain | W3C validator |