MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnioo Structured version   Visualization version   GIF version

Theorem unirnioo 13349
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo ℝ = ran (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 13322 . . . 4 (-∞(,)+∞) = ℝ
2 ioof 13347 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6651 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
5 mnfxr 11169 . . . . 5 -∞ ∈ ℝ*
6 pnfxr 11166 . . . . 5 +∞ ∈ ℝ*
7 fnovrn 7521 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
84, 5, 6, 7mp3an 1463 . . . 4 (-∞(,)+∞) ∈ ran (,)
91, 8eqeltrri 2828 . . 3 ℝ ∈ ran (,)
10 elssuni 4887 . . 3 (ℝ ∈ ran (,) → ℝ ⊆ ran (,))
119, 10ax-mp 5 . 2 ℝ ⊆ ran (,)
12 frn 6658 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
132, 12ax-mp 5 . . 3 ran (,) ⊆ 𝒫 ℝ
14 sspwuni 5046 . . 3 (ran (,) ⊆ 𝒫 ℝ ↔ ran (,) ⊆ ℝ)
1513, 14mpbi 230 . 2 ran (,) ⊆ ℝ
1611, 15eqssi 3946 1 ℝ = ran (,)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547   cuni 4856   × cxp 5612  ran crn 5615   Fn wfn 6476  wf 6477  (class class class)co 7346  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145  (,)cioo 13245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioo 13249
This theorem is referenced by:  pnfnei  23135  mnfnei  23136  uniretop  24677  tgioo  24711  xrtgioo  24722  bndth  24884  relowlssretop  37407  relowlpssretop  37408  mblfinlem3  37709  mblfinlem4  37710  ismblfin  37711
  Copyright terms: Public domain W3C validator