![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unirnioo | Structured version Visualization version GIF version |
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
unirnioo | ⊢ ℝ = ∪ ran (,) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax 13403 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
2 | ioof 13428 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 6716 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | mnfxr 11275 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
6 | pnfxr 11272 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
7 | fnovrn 7584 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
8 | 4, 5, 6, 7 | mp3an 1459 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
9 | 1, 8 | eqeltrri 2828 | . . 3 ⊢ ℝ ∈ ran (,) |
10 | elssuni 4940 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
12 | frn 6723 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
14 | sspwuni 5102 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
15 | 13, 14 | mpbi 229 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
16 | 11, 15 | eqssi 3997 | 1 ⊢ ℝ = ∪ ran (,) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 × cxp 5673 ran crn 5676 Fn wfn 6537 ⟶wf 6538 (class class class)co 7411 ℝcr 11111 +∞cpnf 11249 -∞cmnf 11250 ℝ*cxr 11251 (,)cioo 13328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 |
This theorem is referenced by: pnfnei 22944 mnfnei 22945 uniretop 24499 tgioo 24532 xrtgioo 24542 bndth 24704 relowlssretop 36547 relowlpssretop 36548 mblfinlem3 36830 mblfinlem4 36831 ismblfin 36832 |
Copyright terms: Public domain | W3C validator |