MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnioo Structured version   Visualization version   GIF version

Theorem unirnioo 12886
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
unirnioo ℝ = ran (,)

Proof of Theorem unirnioo
StepHypRef Expression
1 ioomax 12859 . . . 4 (-∞(,)+∞) = ℝ
2 ioof 12884 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6502 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
5 mnfxr 10741 . . . . 5 -∞ ∈ ℝ*
6 pnfxr 10738 . . . . 5 +∞ ∈ ℝ*
7 fnovrn 7324 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
84, 5, 6, 7mp3an 1458 . . . 4 (-∞(,)+∞) ∈ ran (,)
91, 8eqeltrri 2849 . . 3 ℝ ∈ ran (,)
10 elssuni 4833 . . 3 (ℝ ∈ ran (,) → ℝ ⊆ ran (,))
119, 10ax-mp 5 . 2 ℝ ⊆ ran (,)
12 frn 6508 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
132, 12ax-mp 5 . . 3 ran (,) ⊆ 𝒫 ℝ
14 sspwuni 4990 . . 3 (ran (,) ⊆ 𝒫 ℝ ↔ ran (,) ⊆ ℝ)
1513, 14mpbi 233 . 2 ran (,) ⊆ ℝ
1611, 15eqssi 3910 1 ℝ = ran (,)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  wss 3860  𝒫 cpw 4497   cuni 4801   × cxp 5525  ran crn 5528   Fn wfn 6334  wf 6335  (class class class)co 7155  cr 10579  +∞cpnf 10715  -∞cmnf 10716  *cxr 10717  (,)cioo 12784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-pre-lttri 10654  ax-pre-lttrn 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-ioo 12788
This theorem is referenced by:  pnfnei  21925  mnfnei  21926  uniretop  23469  tgioo  23502  xrtgioo  23512  bndth  23664  relowlssretop  35086  relowlpssretop  35087  mblfinlem3  35402  mblfinlem4  35403  ismblfin  35404
  Copyright terms: Public domain W3C validator